CIESC Journal ›› 2017, Vol. 68 ›› Issue (7): 2641-2652.DOI: 10.11949/j.issn.0438-1157.20170161
Previous Articles Next Articles
HU Ping1,2, CHANG Tian1, CHEN Zhenyu1, KANG Lu1, ZHOU Yuhang1, YANG Fan1,2, YANG Zhanlin1, DU Jinjing1
Received:
2017-02-21
Revised:
2017-04-10
Online:
2017-07-05
Published:
2017-07-05
Contact:
10.11949/j.issn.0438-1157.20170161
Supported by:
supported by the National Natural Science Foundation of China (51404181).
胡平1,2, 常恬1, 陈震宇1, 康路1, 周宇航1, 杨帆1,2, 杨占林1, 杜金晶1
通讯作者:
胡平
基金资助:
国家自然科学基金项目(51404181)。
CLC Number:
HU Ping, CHANG Tian, CHEN Zhenyu, KANG Lu, ZHOU Yuhang, YANG Fan, YANG Zhanlin, DU Jinjing. Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles[J]. CIESC Journal, 2017, 68(7): 2641-2652.
胡平, 常恬, 陈震宇, 康路, 周宇航, 杨帆, 杨占林, 杜金晶. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7): 2641-2652.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170161
[1] | 常青. 纳米四氧化三铁及其复合材料的制备与应用[D]. 武汉: 华中科技大学, 2011. CHANG Q. Synthesis and application of magnetite nanoparticles and composites[D]. Wuhan: Huazhong University of Science and Technology, 2011. |
[2] | LI P, LI L L, ZHAN Y B, et al. Selective binding and magnetic separation of histidine-tagged proteins using Fe3O4/Cu-apatite nanoparticles[J]. Journal of Inorganic Biochemistry, 2016, 156: 49-54. |
[3] | SADAT M E, RONAK P, JASON S. Effect of spatial confinement on magnetic hypertermia via dipolar interactions in Fe3O4 nanoparticles for biomedical application[J]. Materials Science and Engineering C, 2014, 42: 52-63. |
[4] | 谭丽莎, 孙明洋, 胡运俊, 等. 功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展, 2013, 25(12): 2148-2158. TAN L S, SUN M Y, HU Y J, et al. Heavy metal removal from aqueous solution by functional magnetic Fe3O4 nanoparticles[J]. Progress in Chemistry, 2013, 25(12): 2148-2158. |
[5] | PENG H X, HU C Y, HU J L, et al. Fe3O4@mZnO nanoparticles as magnetic and microwave responsive drug carriers[J]. Micrporous and Mesoporous Materials, 2016, 226: 140-145. |
[6] | YAZDANI F, FATTAHI B, AZIZI N. Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent[J]. Journal of Magnetism and Magneticals, 2016, 406: 207-211. |
[7] | 康路, 胡平, 杨军, 等. 磁性纳米四氧化三铁在生物医学中的应用[J]. 材料导报, 2015, 29(11): 132-144. KANG L, HU P, YANG J, et al. Applications of magnetic Fe3O4 nanoparticles in biomedical field[J]. Materials Review, 2015, 29(11): 132-144. |
[8] | YUAN B, YANG X Q, XUE L W. A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: synergistic recovery of anthocyanin from fruit and vegetable waste[J]. Bioresource Technology, 2016, 222: 14-23. |
[9] | LIU X, LI L, LIU Y Q, et al. Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor[J]. Biosensors and Bioelectronics, 2014, 59: 328-334. |
[10] | MALEKI A, ALREZVANI Z, MALEKI S. Design, preparation and characterization of urea-functionalized Fe3O4/SiO2 magnetic nanocatalyst and application for the one-pot multicoponent synthesis of substituted imidazole derivatives[J]. Catalysis Communications, 2015, 69: 29-33. |
[11] | RABBAN M, RAFIEE F, GHAFURI H. Synthesis of Fe3O4 nonoparticles via a fast and facile machanochemical method: modification of surface with porphyrin and photocatalytic study[J]. Materials Letters, 2016, 166: 247-50. |
[12] | FAN H L, LI L, ZHOU S F, et al. Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption[J]. Ceramics International, 2016, 42(3): 4228-4237. |
[13] | FANG W J, ZHENG J, CHEN C, et al. One-pot synthesis of porous Fe3O4 shell/silver core nanocomposites used as recyclable magnetic antibacterial agents[J]. Journal of Magnetism and Magnetic Materials, 2014, 357: 1-6. |
[14] | FARMANY A, MORTAZAVI S S, MAHADAVI H, et al. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal[J]. Journal of Magnetism and Magnetic Materials, 2016, 416: 75-80. |
[15] | QIAO M T, LEI X F, MA Y, et al. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature[J]. Journal of Alloys and Compounds, 2017, 693: 432-439. |
[16] | BAGWE R P, HILLIARD L R, TAN W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding[J]. Langmuir, 2006, 22: 4357-4362. |
[17] | PENG X H, WANG Y J, TANG X L, et al. Functionalized magnetic core-shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(Ⅱ)[J]. Dyes and Pigments, 2011, 91: 26-32. |
[18] | STOBER W, FINK A. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69. |
[19] | YANG L L, ZOU P, CAO J, et al. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles[J]. Superlattices and Microstructures, 2014, 76: 205-212. |
[20] | HOU X M, XU H B, PAN L, et al. Adsorption of bovine serum albumin on superparamagnetic composite microspheres with a Fe3O4/SiO2 core and mesoporous SiO2 shell[J]. RSC Advances, 2015, 126(5): 103760-103766. |
[21] | FU X Y, LIU J J, HE X H, et al. A facile preparation method for single-hole hollow Fe3O4@SiO2 microspheres[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, 453: 101-108. |
[22] | ROTO R, YUSRAN Y, KUNCAKA A, et al. Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption[J]. Applied Surface Science, 2016, 377: 30-36. |
[23] | 董景伟, 张志荣, 张旸, 等. 反相微乳液法制备超顺磁性核壳Fe3O4@SiO2纳米颗粒[J]. 材料导报, 2011, 24(5): 166-169. DONG J W, ZHANG Z Y, ZHANG Y, et al. Preparation of superparamagnetic core-shell Fe3O4@SiO2 nanoparticles by reverse microemuision[J]. Materials Review, 2011, 24(5): 166-169. |
[24] | XING Y, JIN Y Y. Controllable synthesis and characterization of Fe3O4/Au composite nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2015, 380: 150-156. |
[25] | PATI S S, HEROJIT S L, GUIMARAES E M, et al. Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: synthesis and characterization[J]. Journal of Alloys and Compounds, 2016, 684: 68-74. |
[26] | 李亚斋, 王虹. Fe3O4-Ag磁性复合纳米颗粒的制备及其生物医学应用研究进展[J]. 化工新型材料, 2015, 43(4): 229-231. LI Y Z, WANG H. Advances in preparation and biomedical application of Fe3O4-Ag magnetic composite nanoparticles[J]. New Chemical Materials, 2015, 43(4): 229-231. |
[27] | DU J J, JING C Y. Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification[J]. Journal of Physical Chemistry C, 2011, 115(36): 17829-17835. |
[28] | CHUDASAMA B, UPADHYAY R V, METHA R V, et al. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures[J]. Nano Research, 2010, 2(12): 955-965. |
[29] | SHATERIAN H R, AGHAKHANIZADEH M. Minopropyl coated on magnetic Fe3O4 and SBA-15 nanoparticles catalyzed mild preparation of chromeno[2, 3-d]pyrimidines under ambient and solvent-free conditions[J]. Catalysis Science & Technology, 2013, 3(2): 425-428. |
[30] | 高强, 冯钰锜. 磁性微纳米材料的功能化及其在食物样品前处理中的应用进展[J]. 色谱, 2014, 32(10): 1043-1051. GAO Q, FENG Y Q. Magneticmicro-/nano- materials: functionalization and their applications in pretreatment for food samples[J]. Journal of Chromatography, 2014, 32(10): 1043-1051. |
[31] | JAFARZADEH M, SOLEIMANI E. Preparation of trifluoroacetic acid-immobilized Fe3O4@SiO2-APTES nanocatalyst for synthesis of quinolines[J]. Journal of Fluorine Chemistry, 2015, 178: 219-224. |
[32] | SINGH D, GAUTAM R K, KUMAR R, et al. Citric acid coated magnetic nanoparticles: synthesis, characterization and application in removal of Cd(II) ions from aqueous solution[J]. Journal of Water Process Engineering, 2014, (4): 233-241. |
[33] | CHEN L G, WANG T, TONG J, et al. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples[J]. Trac-trends in Analytical Chemistry, 2011, 30(7): 1095-1108. |
[34] | 贺盛福, 张帆, 程深圳, 等. 聚丙烯酸钠包覆Fe3O4磁性交联聚合物的制备及其对Pb(Ⅱ)和Cd(Ⅱ)的吸附性能[J]. 化工学报, 2016, 67(10): 4291-4299. HE S F, ZHANG F, CHENG S Z, et al. Preparation and Pb2+/Cd2+ adsorption of encapsulated Fe3O4/sodium polyacrylate magnetic cross linking polymer[J]. CIESC Journal, 2016, 67(10): 4291-4299. |
[35] | REZAYAN A H, MOUSAVI M, KHEIRJOU S, et al. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method[J]. Journal of Magnetism and Magnetic Materials, 2016, 416: 75-80. |
[36] | YU L H, HAO G, GU J J, et al. Fe3O4/PS magnetic nanoparticles: synthesis, characterization and their application as sorbents of oil from waste water[J]. Journal of Magnetism and Magnetic Materials, 2015, 394: 14-21. |
[37] | REDDY P M, CHANG C J, CHEN J K, et al. Robust polymer grafted Fe3O4 nanospheres for benign removal of oil from water[J]. Applied Surface Science, 2016, 368: 27-35. |
[38] | 张志杰, 唐涛. Fe3O4/聚苯乙烯纳米复合材料的结构与性能[J]. 高等学校化学学报, 2014, 35(11): 2472-2480. ZHANG Z J, TANG T. Structure and properties of Fe3O4/polystyrene nanocomposites[J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2472-2480. |
[39] | ANBARASU M, ANANDAN M, CHINNASAMY E, et al. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 135: 536-539. |
[40] | ZULFIKAR M A, AFRITA S. Preparation of Fe3O4-chitosan hybrid nano-particles used for humic acid adsorption[J]. Environmental Nanotechnology, Monitoring & Management, 2016, (6): 64-75. |
[41] | LEWANDOWSKIA D, CEGLOWSKIA M, SMOLUCH M, et al. Magnetic mesoporous silica Fe3O4@SiO2@meso-SiO2 and Fe3O4@SiO2@meso-SiO2-NH2 as adsorbents for the determination of trace organic compounds[J]. Microporous and Mesoporous Materials, 2017, 240: 24080-24090. |
[42] | CIESH U, SCHUTH F. Ordered mesoporous materials[J]. Microporous and Mesoporous Materials, 1999, 27(2/3): 131-149. |
[43] | YING J Y, MEHNERT C P, WONG M S, et al. Synthesis and applications of supramol ecular-templated mesoporous materials[J]. Angewandte Chemie International Edition, 1999, 38(1/2): 56-77. |
[44] | TREWYN B G, WHITMAN C M, LIN V S Y, et al. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents[J]. Micro & Nano Letters, 2004, 11(4): 2139-2143. |
[45] | 王士婷, 陈文娟, 王德平, 等. Fe3O4@m-SiO2磁性纳米颗粒的制备及其药物缓释行为[J]. 硅酸盐学报, 2013, 41(3): 282-287. WANG S T, CHEN W J, WANG D P, et al. Preparation and drug delivery behavior of Fe3O4@m-SiO2 magnetic nanoparticles[J]. Jounal of the Chinese Ceramic Society, 2013, 41(3): 282-287. |
[46] | 吴四华, 黄进. 介孔磁性微球的制备表征及其在环境中的应用[J]. 环境科学与技术, 2011, 34(12): 75-78. WU S H, HUANG J. Preparation and characterization of mesoporous magnetic nanoparticles and their usage in environment[J]. Environmental Science &Technology, 2011, 34(12): 75-78. |
[47] | RODNEY S R, DONG Q, WING K L, et al. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements[J]. Comptes Rendus Physique, 2003, (4): 993-1008. |
[48] | DAI H. Carbon nanotubes: opportunities and challenges[J]. Surface Science, 2002, 500: 218-241. |
[49] | YANG L, HU J H. Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance[J]. Electrochimica Acta, 2014, 144: 235-242. |
[50] | 高云燕, 李海霞, 欧植泽, 等. 多壁碳纳米管负载Fe3O4磁性纳米粒子表面吸附增强过氧化酶的催化活性[J]. 物理化学学报, 2011, 27(10): 2469-2477. GAO Y Y, LI H X, OU Z Z, et al. Enhancing the catalytic activity of peroxidase by adsorption onto Fe3O4 magnetic nanoparticle/multiwalled carbon nanotube composite surfaces[J]. Acta Physico-Chimic Sinica, 2011, 27(10): 2469-2477. |
[51] | LI S Z, GONG Y B. Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration[J]. Chemical Engineering Journal, 2015, 260: 231-239. |
[52] | LIU Y, HAO X J, WADDINGTON L J, et al. Surface modification of multiwalled carbon nanotubes with engineered self-assembled RAFT diblock coatings[J]. Australian Journal of Chemistry, 2014, 67: 151-158. |
[53] | KRISHNA R, DIAS C. Green and facile decoration of Fe3O4 nanoparticles on reduced graphene oxide[J]. Materials Today: Proceedings, 2016, (3): 2807-2813. |
[54] | YANG X, ZHANG X, MA Y, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers[J]. Journal of Materials Chemistry, 2009, 19(18): 2710-2714. |
[55] | DENG H J, LEI Z L. Preparation and characterization of hollow Fe3O4/SiO2@PEG-PLA nanoparticles for drug delivery[J]. Composites: Part B, 2013, 54: 194-199. |
[56] | AN N, LIN H M. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery[J]. Materials Science and Engineering C, 2016, 69: 292-300. |
[57] | JIANG Q L, ZHENG S W. Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo[J]. Applied Surface Science, 2014, 307: 224-233. |
[58] | ZAN P, YANG C Y. One-pot fabricating Fe3O4/graphene nanocomposite with excellent biocompatibility and non-toxicity as a negative MR contrast agent[J]. Colloids and Surfaces B: Biointerfaces, 2016, 145: 208-216. |
[59] | DING W Z, LOU C G, QIU J S, et al. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12: 235-244. |
[60] | LIU Y, HUGHES T C, MUIR B W, et al. Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents[J]. Biomaterials, 2014, 35: 378-386. |
[61] | SHENG W, WEI W. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation[J]. Applied Surface Science, 2016, 387: 1116-1124. |
[62] | JORDAN A, WUST P, FAHLIN H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia[J]. Hyperther, 1993, (9): 51-68. |
[63] | JADHAV N V, PRASAD A I. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications[J]. Colloids and Surfaces B: Biointerfaces, 2013, 108: 158-168. |
[64] | BAI L Z, ZHAO D L. Inductive heating property of graphene oxide-Fe3O4 nanoparticles hybrid in an AC magnetic field for localized hyperthermia[J]. Materials Letters, 2012, 68: 399-401. |
[65] | GHASEMI E, HEYDARI A, SIKILLANPAA M, et al. Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(Ⅰ), Hg(Ⅱ), Mn(Ⅱ), Zn(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) from water and soil environmental samples[J]. Microchemical Journal, 2017, 131: 51-56. |
[66] | BAO S Y, TANG L H, LI K, et al. Highly selective removal of Zn(Ⅱ) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent[J]. Journal of Colloid and Interface Science, 2016, 462: 235-242. |
[67] | SONG H J, YOU S S, JIA X H, et al. MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment[J]. Ceramics International, 2015, 41(10): 13896-13902. |
[68] | LIU Y, FU R Q. Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solutions[J]. Applied Surface Science, 2016, 369: 267-276. |
[69] | WANG Z X, XU J, HU Y J, et al. Functional nanomaterials: study on aqueous Hg(Ⅱ) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 394-402. |
[70] | 庄福强, 谭瑞琴, 杨晔, 等. 磁性纳米材料在污水中重金属离子吸附应用中的研究进展[J]. 材料导报, 2014, 28(3): 24-29. ZHUANG F Q, TAN R Q, YANG Y, et al. Research progress in the application of magnetic nanomaterial for the adsorption of heavy metal ions in waste water[J]. Materials Review, 2014, 28(3): 24-29. |
[71] | BADRUDDOZA A Z M, SHAWON Z B Z, DANIEL T W J, et al. Fe3O4/cyclodextrinpolymer nanocomposites for selective heavy metals removal from industrial waste water[J]. Carbohydrate Polymers, 2013, 91(1): 322-332. |
[72] | DALVAND A, NABIZADEH R, GANJALI M R, et al. Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies[J]. Journal of Magnetism and Magnetic Materials, 2016, 404: 179-189. |
[73] | WANG P Y, WANG X X. Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater[J]. Chemical Engineering Journal, 2016, 306: 280-288. |
[74] | MADRAKIAN T, AFKHAMIA A, AHMADIA M, et al. Removal of some cationic dyes from aqueous solution using magnetic-modified multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2011, 196: 109-114. |
[1] | Chongda DUAN, Xiaowei YAO, Jiahua ZHU, Jing SUN, Nan HU, Guangyue LI. Effects of environmental factors on calcium carbonate precipitation induced by Klebsiella aerogenes [J]. CIESC Journal, 2023, 74(8): 3543-3553. |
[2] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[3] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[4] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[5] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[6] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[7] | Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry [J]. CIESC Journal, 2023, 74(2): 585-598. |
[8] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[9] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[10] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
[11] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[12] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[13] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[14] | Gang WANG, Xiaoping CHE, Shiyong WANG, Jieshan QIU. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance [J]. CIESC Journal, 2022, 73(4): 1763-1771. |
[15] | Shipei XU, Chao WANG, Qingyuan LI, Bingkang ZHANG, Shiwei XU, Xueqin ZHANG, Shiying WANG, Mengxiao CONG. Study on influence of CaO during thermal desorption products of oil-based drilling cuttings [J]. CIESC Journal, 2022, 73(4): 1724-1731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||