[1] |
龙正伟, 冯壮波, 姚强. 静电除尘器数值模拟[J]. 化工学报, 2012, 63(11):3393-3401. LONG Z W, FENG Z B, YAO Q. Numerical modeling of electrostatic precipitator[J]. CIESC Journal, 2012, 63(11):3393-3401.
|
[2] |
熊桂龙, 李水清, 陈晟, 等. 增强PM_(2.5)脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9):2217-2223. XIONG G L, LI S Q, CHEN S, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9):2217-2223.
|
[3] |
隋建才, 徐明厚, 丘纪华, 等. 燃煤可吸入颗粒的物理化学特性及形成机理[J]. 化工学报, 2006, 57(7):1664-1670. SUI J C, XU M H, QIU J H, et al. Physical and chemical properties and formation mechanism of inhaled particles produced by coal combustion[J]. Journal of Chemical Industry and Englineering(China), 2006, 57(7):1664-1670.
|
[4] |
YAO Q, LI S Q, XU H W, et al. Studies on formation and control of combustion particulate matter in China:a review[J]. Energy, 2010, 35(11):4480-4493.
|
[5] |
颜金培, 陈立奇, 杨林军. 燃煤细颗粒在过饱和氛围下声波团聚脱除的实验研究[J]. 化工学报, 2014, 65(8):3243-3249. YAN J P, CHEN L Q, YANG L J. Agglomeration removal of fine particles at super-saturation steam by using acoustic wave[J]. CIESC Journal, 2014, 65(8):3243-3294.
|
[6] |
洪亮, 王礼鹏, 祁慧,等. 细颗粒物团聚性能实验研究[J]. 热力发电, 2014, 43(9):124-128. HONNG L, WANG L P, QI H, el al. Experimental research on agglomeration characteristics of fine particlulate matters in Shajiao C Power Plant[J]. Thermal Power Generation, 2014, 43(9):124-128.
|
[7] |
TRUCE R, CRYNACK R, WILKINS J, 等. INDIGO凝聚器——减少电除尘器可见排放物的有效技术[C]//第11届全国电除尘学术会议论文集. 2005:244-252. TRUCE R, CRYNACK R, WILKINS J, et al. The indigo agglomerator:the effective technology to reduce ESP visible emissions[C]//Proceedings of the 11th Conference of ESP. 2005:244-252.
|
[8] |
LI Y F, YANG J G, WANG Y Y, et al. A novel turbulent aggregation device for flue gas[C]//Advanced Materials Research. Trans Tech Publications, 2014, 955:2425-2429.
|
[9] |
郑建祥, 朱秀丽. 粘附性颗粒流化特性研究及信息熵分析[J]. 东北电力大学学报, 2015, 35(2):18-22. ZHENG J X, ZHU X L. Study and application of shannon entropy in analysis of flow behavior of cohesive particle agglomerations[J]. Journal of Northeast Dianli University, 2015, 35(2):18-22.
|
[10] |
刘忠, 刘含笑, 冯新新,等. 湍流聚并器流场和颗粒运动轨迹模拟[J]. 中国电机工程学报, 2012, 32(14):71-75. LIU Z, LIU H X, FENG X X, et al. Simulation for the flow field of the turbulence coalescence device and the trajectory of particles[J]. Proceedings of the CSEE, 2012, 32(14):71-75.
|
[11] |
MCGRAW R. Description of aerosol dynamics by the quadrature method of moments[J]. Aerosol Science & Technology, 2007, 27(2):255-265.
|
[12] |
GORDON R G. Error bounds in equilibrium statistical mechanics[J]. Journal of Mathematical Physics, 1968, 9(5):655-663.
|
[13] |
RONG F, MARCHISIO D L, FOX R O. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds[J]. Powder Technology, 2004, 139(1):7-20.
|
[14] |
GIMBUN J, NAGY Z K, RIELLY C D. Simultaneous quadrature method of moments for the solution of population balance equations, using a differential algebraic equation framework[J]. Industrial & Engineering Chemistry Research, 2009, 3(1):23-28.
|
[15] |
SAFFMAN P G, TURNER J S. On the collision of drops in turbulent clouds[J]. Journal of Fluid Mechanics, 1956, 1(1):16-30.
|
[16] |
ZHOU Y, WEXLER A S, WANG L P. On the collision rate of small particles in isotropic turbulence(Ⅱ):Finite inertia case[J]. Physics of Fluids, 1998, 10(5):1206-1216.
|
[17] |
刘含笑, 姚宇平, 郦建国. 凝聚器二维单扰流柱流场中颗粒凝并模拟[J]. 动力工程学报, 2015, 4(5):292-297. LIU H X, YAO Y P, LI J G. Coagulating simulation of particles in flow field of coagulator 2D single turbulence column[J]. Journal of Chinese Society of Power Engineering, 2015, 4(5):292-297.
|
[18] |
李云飞. 煤烟气细颗粒物湍流团聚的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. LI Y F. Research on turbulent aggegation of fine particles in flue gas[D]. Harbin:Harbin Institute of Technology, 2014.
|
[19] |
陈阿强, 王振波, 孙治谦. 基于相群平衡模型的浮选气泡聚并模拟[J]. 化工学报, 2015, 66(12):4780-4787. CHEN A Q, WANG Z B, SUN Z Q. Numerical simulayion of bubble coalescence in dissolved air flotation tank based on population balance model[J]. CIESC Journal, 2015, 66(12):4780-4787.
|
[20] |
MEYER C J, DEGLON D A. Particle collision modeling-a review[J]. Minerals Engineering, 2011, 24(8):719-730.
|
[21] |
CHENG J C, VIGIL R D, FOX R O. A competitive aggregation model for Flash NanoPrecipitation[J]. Journal of Colloid & Interface Science, 2010, 35(2):330-342.
|
[22] |
HOGG R, HEALY T W, FUERSTENAU D W. Mutual coagulation of colloidal dispersions[J]. Trans. Faraday Soc., 1966, 62(3):1638-1651.
|
[23] |
FUCHS N. Uber die stabilitat and aufladung der aerosole[J]. Zeitschrift fur Physik, 1934, 89(11):736-743.
|
[24] |
HAN M Y, LEE H. Collision effiency factor in Brownian cogulation for unstable and stable suspension including hydrodynamics and interparticle forces[J]. KSCE Journal of Civil Engineering, 1997, 1(1):95-102
|
[25] |
CHUN J, KOCH D L. Coagulation of monodisperse aerosol particles by isotropic turbulence[J]. Physics of Fluids, 2005, 17(17):779-797.
|
[26] |
ABRAHAMSON J. Collision rates of small particles in a vigorously turbulent fluid[J]. Chemical Engineering Science, 1975, 30(11):1371-1379.
|
[27] |
ZAICHIK L I, SOLOVEV A L. Collision and coagulation nuclei under conditions of brownian and turbulent motion of aerosol particles[J]. High Temperature, 2002, 40(3):422-427.
|
[28] |
章鹏飞, 米建春, 潘祖明. 装置元件排列间距和颗粒浓度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(6):1625-1632. ZHANG P F, MI J C, PAN Z M. Influences of elemental arrangement and particle concentration on fine particle amalgamation[J]. Proceedings of the CSEE, 2016, 36(6):1625-1632.
|