[1] |
EGGERSDORFER M L, PRATSINIS S E. Agglomerates and aggregates of nanoparticles made in the gas phase[J]. Advanced Powder Technology, 2014, 25(1):71-90.
|
[2] |
VAN OMMEN J R, VALVERDE J M, PFEFFER R. Fluidization of nanopowders:a review[J]. Journal of Nanoparticle Research, 2012, 14(3):737.
|
[3] |
ZHU X, ZHANG Q, WANG Y, et al. Review on the nanoparticle fluidization science and technology[J]. Chinese Journal of Chemical Engineering, 2016, 24(1):9-22.
|
[4] |
刘荣正, 刘马林, 邵友林, 等. 流化床-化学气相沉积技术的应用及研究进展[J]. 化工进展, 2016, 35(5):1263-1272. LIU R Z, LIU M L, SHAO Y L, et al. Application and research progress of fluidized bed-chemical vapor deposition technology[J]. Chemical Industry and Engineering Progress, 2016, 35(5):1263-1272.
|
[5] |
WEI F, ZHANG Q, QIAN W Z, et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor:a multiscale space-time analysis[J]. Powder Technology, 2008, 183(1):10-20.
|
[6] |
齐国杰, 董勇, 崔琳, 等. 超细颗粒物增湿团聚技术研究进展[J]. 化工进展, 2009, 28(5):745-749. QI G J, DONG Y, CUI L, et al. Review of submicron particles humidifying agglomeration[J]. Chemical Industry and Engineering Progress, 2009, 28(5):745-749.
|
[7] |
MATSUDA S, HATANO H, TSUTSUMI A. Ultrafine particle fluidization and its application to photocatalytic NOx treatment[J]. Chemical Engineering Journal, 2001, 82(1/2/3):183-188.
|
[8] |
汤善康, 耿启金, 刘刚, 等. 光催化降解活性染料K-GL的动力学及其盐效应[J]. 化工进展, 2014, 33(7):1908-1912. TANG S K, GENG Q J, LIU G, et al. Investigation into salt effect and kinetics of photocatalytic degradation of reactive dye K-GL[J]. Chemical Industry and Engineering Progress, 2014, 33(7):1908-1912.
|
[9] |
GELDART D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5):285-292.
|
[10] |
CHAOUKI J, CHAVARIE C, KLVANA D, et al. Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J]. Powder Technology, 1985, 43(3):117-125.
|
[11] |
TAMADONDAR M R, ZARGHAMI R, TAHMASEBPOOR M, et al. Characterization of the bubbling fluidization of nanoparticles[J]. Particuology, 2014, 16(10):75-83
|
[12] |
ZHU C, YU Q, DAVE R N, et al. Gas fluidization characteristics of nanoparticle agglomerates[J]. AIChE Journal, 2005, 51(2):426-439.
|
[13] |
WANG Y, GU G S, WEI F, et al. Fluidization and agglomerate structure of SiO2 nanoparticles[J]. Powder Technology, 2002, 124(1/2):152-159.
|
[14] |
LIU H P, ZHANG L Y, CHEN Y P, et al. Experimental study on the fluidization behaviors of the superfine particles[J]. Chemical Engineering Journal, 2015, 262(2):579-587.
|
[15] |
周涛, 段昊, 唐文江, 等. 混合纳米SiO2和纳米TiO2颗粒在添加FCC的流态化研究[J]. 湖南工业大学学报, 2014, 28(4):1-7. ZHOU T, DUAN H, TANG W J, et al. Fluidization behavior of mixed SiO2 and TiO2 nanoparticles with FCC particles[J]. Journal of Hunan University of Technology, 2014, 28(4):1-7.
|
[16] |
LIANG X, DUAN H, ZHOU T, et al. Fluidization behavior of binary mixtures of nanoparticles in vibro-fluidized bed[J]. Advanced Powder Technology, 2014, 25(1):236-243.
|
[17] |
YANG J S, ZHOU T, SONG L Y. Agglomerating vibro-fluidization behavior of nanoparticles[J]. Advanced Powder Technology, 2009, 20(2):158-163.
|
[18] |
QUEVEDO J A, OMOSEBI A, PFEFFER R. Fluidization enhancement of agglomerates of metal oxide nanopowders by microjets[J]. AIChE Journal, 2010, 56(6):1456-1468.
|
[19] |
LIU H, GUO Q J, CHEN S. Sound-assisted fluidization of SiO2 nanoparticles with different surface properties[J]. Industrial & Engineering Chemistry Research, 2007, 46(1):1345-1349.
|
[20] |
QUINTANILLA M A S, VALVERDE J M, ESPIN M J, et al. Electrofluidization of silica nanoparticle agglomerates[J]. Industrial & Engineering Chemistry Research, 2012, 51(1):531-538.
|
[21] |
ZHOU T, LI H. Estimation of agglomerate size for cohesive particles during fluidization[J]. Powder Technology, 1999, 101(1):57-62.
|
[22] |
DE MARTÍN L, BOUWMAN W G, VAN OMMEN J R. Multidimensional nature of fluidized nanoparticle agglomerates[J]. Langmuir, 2014, 30(42):12696-12702.
|
[23] |
VALVERDE J M, CASTELLANOS A. Fluidization of nanoparticles:a simple equation for estimating the size of agglomerates[J]. Chemical Engineering Journal, 2008, 140(1/2/3):296-304.
|
[24] |
TAMADONDAR M R, ZARGHAMI R, BOUTOU K, et al. Size of nanoparticle agglomerates in fluidization[J]. Canadian Journal of Chemical Engineering, 2016, 94(3):476-484.
|
[25] |
MOROOKA S, KUSAKABE K, KOBATA A, et al. Fluidization state of ultrafine powders[J]. Journal of Chemical Engineering of Japan, 1988, 21(1):41-46.
|
[26] |
NAM C H, PFEFFER R, DAVE R N, et al. Aerated vibrofluidization of silica nanoparticles[J]. AIChE Journal, 2004, 50(8):1776-85.
|
[27] |
柯希玮, 刘道银, 闫珂, 等. 基于动态平衡预测纳米颗粒流化床内聚团尺寸分布[J]. 化学反应工程与工艺, 2016, 32(5):445-454. KE X W, LIU D Y, YAN K, et al. Prediction of the agglomerates size distribution in the nanoparticle fluidized bed based on dynamic equilibrium[J]. Chemical Reaction Engineering and Technology, 2016, 32(5):445-454.
|
[28] |
BUTT H J, KAPPL M. Surface and Interfacial Forces[M]. Weinheim:Wiley-VCH Press, 2010:5.
|
[29] |
MEFFORD O T, VADALA M L, GOFF J D, et al. Stability of polydimethylsiloxane-magnetite nanoparticle dispersions against flocculation:interparticle interactions of polydisperse materials[J]. Langmuir, 2008, 24(9):5060-5069.
|
[30] |
DE MARTÍN L, VAN OMMEN J R. A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds[J]. Journal of Nanoparticle Research, 2013, 15(11):2055.
|