[1] |
GAO J J, LIU Q, GU F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29):22759-22776.
|
[2] |
RONSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation-from fundamentals to current projects[J]. Fuel, 2016, 166:276-296.
|
[3] |
孟凡会, 常慧蓉, 李忠. Ni-Mn/Al2O3催化剂在浆态床中CO甲烷化催化性能[J]. 化工学报, 2014, 65(8):2997-3003. MENG F H, CHANG H R, LI Z. Catalytic performance of Ni-Mn/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. CIESC Journal, 2014, 65(8):2997-3003.
|
[4] |
CZEKAJ I, STRUIS R, WAMBACH J, et al. Sulphur poisoning of Ni catalysts used in the SNG production from biomass:computational studies[J]. Catalysis Today, 2011, 176(1):429-432.
|
[5] |
YUAN C, NAN Y, WANG X, et al. The SiO2 supported bimetallic Ni-Ru particles:a good sulfur-tolerant catalyst for methanation reaction[J]. Chemical Engineering Journal, 2015, 260:1-10.
|
[6] |
KIM M Y, HA S B, DONG J K, et al. CO methanation over supported Mo catalysts in the presence of H2S[J]. Catalysis Communications, 2013, 35(17):68-71.
|
[7] |
王玮涵, 李振花, 王保伟, 等. 耐硫甲烷化反应的研究进展[J]. 化工学报, 2015, 66(9):3357-3366. WANG W H, LI Z H, WANG B W, et al. Recent advances in sulfur-resistant methanantion[J]. CIESC Journal, 2015, 66(9):3357-3366.
|
[8] |
HAPPEL J, HNATOW M A, BAIARS L. Methods of making high activity transition metal catalysts:US4491639[P]. 1985-01-01.
|
[9] |
ZHANG J F, BAI Y X, ZHANG Q D, et al. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014, 132:211-218.
|
[10] |
WANG B W, YAO Y Q, LIU S H, et al. Effects of MoO3 loading and calcination temperature on the catalytic performance of MoO3/CeO2 toward sulfur-resistant methanation[J]. Fuel Processing Technology, 2015, 138:263-270.
|
[11] |
LI Z H, TIAN Y, HE J, et al. High CO methanation activity on zirconia-supported molybdenum sulfide catalyst[J]. Journal of Energy Chemistry, 2014, 23(5):625-632.
|
[12] |
尚玉光, 王保伟, 李振花, 等. 硫粉改性Mo基耐硫甲烷化催化剂[J]. 石油化工, 2012, 41(9):999-1004. SHANG Y G, WANG B W, LI Z H, et al. Mo-based catalyst modified with sulfur for sulfur-resistant methanation[J]. Petrochemical Technology, 2012, 41(9):999-1004.
|
[13] |
王保伟, 尚玉光, 丁国忠, 等. 铈铝复合载体对钼基催化剂耐硫甲烷化催化性能的研究[J]. 燃料化学学报, 2012, 40(11):1390-1396. WANG B W, SHANG Y G, DING G Z, et al. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11):1390-1396.
|
[14] |
ALEX M G, STEFFGEN F W. Catalytic methanation[J]. Catalysis Reviews, 1974, 8(1):159-210.
|
[15] |
LOGADOTTIR A, MOSES P G, HINNEMANN B, et al. A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts[J]. Catalysis Today, 2006, 111(1-2):44-51.
|
[16] |
CHIANELLI R R, BERHAULT G, RAYBAUD P, et al. Periodic trends in hydrodesulfurization:in support of the Sabatier principle[J]. Applied Catalysis A:General, 2002, 227(1/2):83-96.
|
[17] |
ALONSO G, BERHAULT G, AGUILAR A, et al. Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates[J]. Journal of Catalysis, 2002, 208(2):359-369.
|
[18] |
OKAMOTO Y, MAEZAWA A, IMANAKA T. Active sites of molybdenum sulfide catalysts supported on Al2O3 and TiO2 for hydrodesulfurization and hydrogenation[J]. Journal of Catalysis, 1989, 120(1):29-45.
|
[19] |
BUI V N, LAURENT D, AFNASIEV P, et al. Hydrodeoxygenation of guaiacol with CoMo catalysts (Ⅰ):Promoting effect of cobalt on HDO selectivity and activity[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):239-245.
|
[20] |
BADAWI M, PAUL J F, CRISTOL S, et al. Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts:a combined experimental and DFT study[J]. Journal of Catalysis, 2011, 282(1):155-164.
|
[21] |
BERGWERFF J A, JANSEN M, LELIELD B G, et al. Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates:a Raman microspectroscopy study on the genesis of the active phase[J]. Journal of Catalysis, 2006, 243(2):292-302.
|
[22] |
YAMAGUCHI T. Application of ZrO2 as a catalyst and a catalyst support[J]. Catalysis Today, 1994, 20(2):199-217.
|
[23] |
WANG S, LU G Q. CO2 reforming of methane on Ni catalysts:effects of the support phase and preparation technique[J]. Applied Catalysis B:Environmental, 1998, 16(3):269-277.
|
[24] |
SHIDO T, IWASAWA Y. Regulation of reaction intermediate by reactant in the water-gas shift reaction on CeO2, in relation to reactant-promoted mechanism[J]. Journal of Catalysis, 1992, 136(2):493-503.
|
[25] |
GUI R, TIAN Q, An Y, et al. Coronin 3 promotes gastric cancer metastasis via the up-regulation of MMP-9 and cathepsin K[J]. Molecular Cancer, 2012, 11(1):1-10.
|
[26] |
ZHANG H L, YANG L F, ZHU Y, et al. Serum miRNA-21:elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy[J]. Prostate, 2011, 71(3):326-331.
|
[27] |
PERKAS N, AMIRIAN G, ZHONG Z, et al. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides[J]. Catalysis Letters, 2009, 130(3):455-462.
|
[28] |
FU Y L, LU W J, HUANG Z G. Study of methanation and O2 chemisorption with several supported sulfide molybdenum catalysts[J]. Journal of China University of Science and Technology, 1989, 19(2):171-177.
|
[29] |
PATIL K C, ARUNA S, MIMANI T. Combustion synthesis:an update[J]. Current Opinion in Solid and Materials Science, 2002, 6(6):507-512.
|
[30] |
ZHAO A M, YING W Y, ZHANG H T, et al. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catalysis Communications, 2012, 17(1):34-38.
|
[31] |
SRINIVASAN T K K. Raman spectroscopy of monolayer-type catalysts:supported molybdenum oxides[J]. Catalysis Reviews, 1998, 40(4):451-570.
|
[32] |
El-SHARKAWY E A, KHDER A S, AHMED A I. Structural characterization and catalytic activity of molybdenum oxide supported zirconia catalysts[J]. Microporous & Mesoporous Materials, 2007, 102(1/2/3):128-137.
|
[33] |
LIANG E J, LIANG Y, ZHAO Y, et al. Low-frequency phonon modes and negative thermal expansion in A(MO4)2(A=Zr, Hf and M=W, Mo) by Raman and terahertz time-domain spectroscopy[J]. Journal of Chemical Physics, 2008, 112(49):12582-12587.
|
[34] |
SAMARANCH B, PISCIAN P, CLET G, et al. Study of the structure, acidic, and catalytic properties of binary mixed-oxide MoO3-ZrO2 systems[J]. Chemistry of Materials, 2006, 18(6):1581-1586.
|
[35] |
CHEN K, XIE S, IGLESIA E, et al. Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane[J]. Journal of Catalysis, 2000, 189(2):421-430.
|
[36] |
LI C, LI M. UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO42-/ZrO2[J]. Journal of Raman Spectroscopy, 2002, 33(5):301-308.
|