[1] |
SANTOS A B D, CERVANTES F J, LIER J B V. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology [J]. Bioresource Technology, 2007, 98 (12): 2369-2385.
|
[2] |
陈勇. 印染污泥处理技术分析 [J]. 染整技术, 2009, 31 (8): 26-28.
|
|
CHEN Y. Analysis on treatment technology of printing and dying sludge [J]. Textile Dyeing and Finishing Journal, 2009, 31 (8): 26-28.
|
[3] |
CONSUELO S B, ESTER M, TADEO J L. Analysis of 27 polycyclic aromatic hydrocarbons by matrix solid-phase dispersion and isotope dilution gas chromatography-mass spectrometry in sewage sludge from the Spanish area of Madrid [J]. Journal of Chromatography A, 2007, 1148 (2): 219-227.
|
[4] |
CAI Q Y, MO C H, WU Q T, et al. Concentration and speciation of heavy metals in six different sewage sludge-composts [J]. Journal of Hazardous Materials, 2007, 147 (3): 1063-1072.
|
[5] |
KÖRBAHTI B K, TANYOLAC A. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology [J]. Journal of Hazardous Materials, 2008, 151 (2/3): 422-431.
|
[6] |
VANHULLE S, TROVASLET M, ENAUD E, et al. Decolorization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater [J]. Environmental Science & Technology, 2008, 42 (2): 584-589.
|
[7] |
王玉, 徐勇军, 方战强. 印染污泥处理处置技术的研究进展 [J]. 广东化工, 2012, (4): 110-111.
|
|
WANG Y, XU Y J, FANG Z Q. Progress of the textile dyeing sludge treatmental and disposal techniques [J]. Guangdong Chemical Industry, 2012, (4): 110-111.
|
[8] |
BRIDLE T, SKRYPSKI-MANTEL D S. Assessment of sludge reuse options: a life-cycle approach [J]. Water Science & Technology, 2000, 41 (8): 131-135.
|
[9] |
WANG X H, CHEN H P, YANG H P, et al. Properties of gas and char from microwave pyrolysis of pine sawdust [J]. Bioresources, 2009, 4 (3): 946-959.
|
[10] |
MIKA H, KAIKKO J, BERGMAN R, et al. Performance analysis of power generating sludge combustion plant and comparison against other sludge treatment technologies [J]. Applied Thermal Engineering, 2010, 30 (2/3): 110-118.
|
[11] |
LEDERER J, RECHBERGER H. Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options [J]. Waste Management, 2010, 30 (6): 1043-1056.
|
[12] |
YUAN H R, LU T, ZHAO D D, et al. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis [J]. Journal of Material Cycles and Waste Management, 2013, 15 (3): 357-361.
|
[13] |
ALVAREZ J, LOPEZ G, AMUTIO M, et al. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor [J]. Fuel Processing Technology, 2016, 149: 169-175.
|
[14] |
CABALLERO J A, FRONT R, MARCILLA A, et al. Characterization of sewage sludges by primary and secondary pyrolysis [J]. Journal of Analytical & Applied Pyrolysis, 1997, 40/41: 433-450.
|
[15] |
FOLGUERAS M B, ALONSO M, DIAZ R M. Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge [J]. Energy, 2013, 55 (1): 426-435.
|
[16] |
HOSSAIN M K, STREZOV V, CHAN K Y, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum) [J]. Chemosphere, 2010, 78 (9): 1167-1171.
|
[17] |
?ENSÖZ S, CAN M. Pyrolysis of pine (Pinus Brutia Ten.) Chips: 1. Effect of pyrolysis temperature and heating rate on the product yields [J]. Energy Sources, 2002, 24 (4): 347-355.
|
[18] |
MENÉNDEZ J A, ARENILLAS A, FIDALGO B, et al. Microwave heating processes involving carbon materials [J]. Fuel Processing Technology, 2010, 91 (1): 1-8.
|
[19] |
彭海军, 李志光, 夏兴良, 等. 污泥热解残渣催化市政破膜污泥的热解作用 [J]. 环境化学, 2014, 33 (3): 508-514.
|
|
PENG H J, LI Z G, XIA X L, et al. Catalysis of sludge residual carbon to municipal disintegration-membrance sludge pyrolysis [J]. Environmental Chemistry, 2014, 33 (3): 508-514.
|
[20] |
SHAO J G, YAN R, CHEN H P, et al. Catalytic effect of metal oxides on pyrolysis of sewage sludge [J]. Fuel Processing Technology, 2010, 91 (9): 1113-1118.
|
[21] |
ÁBREGO J, ARAUZO J, SÁNCHEZ J L, et al. Structural changes of sewage sludge char during fixed-bed pyrolysis [J]. Industrial & Engineering Chemistry Research, 2009, 48 (6): 3211-3221.
|
[22] |
TIAN F J, LI B Q, CHEN Y, et al. Formation of NOx, precursors during the pyrolysis of coal and biomass (Ⅴ): Pyrolysis of a sewage sludge [J]. Fuel, 2002, 81 (17): 2203-2208.
|
[23] |
ZHOU G L, WU J J, MIAO Z Y, et al. Effects of process parameters on pore structure of semi-coke prepared by solid heat carrier with dry distillation [J]. International Journal of Mining Science & Technology, 2013, 23 (3): 423-427.
|
[24] |
HU Y J, ZHENG X Y, YAN M, et al. Microscopic pore structure and adsorption properties of resulting residue derived from wet sewage sludge pyrolysis [J]. Journal of Combustion Science and Technology, 2016, 22 (2): 121-125.
|
[25] |
REBITANIM N Z, WAN A W A K G, REBITANIM N A, et al. Potential applications of wastes from energy generation particularly biochar in Malaysia [J]. Renewable & Sustainable Energy Reviews, 2013, 21 (5): 694-702.
|
[26] |
AGRAFIOTI E, BOURAS G, KALDERIS D, et al. Biochar production by sewage sludge pyrolysis [J]. Journal of Analytical & Applied Pyrolysis, 2013, 101 (5): 72-78.
|
[27] |
HUANG Y F, SHIH C H, CHIUEH P T, et al. Microwave co-pyrolysis of sewage sludge and rice straw [J]. Energy, 2015, 87: 638-644.
|
[28] |
LU H L, ZHANG W H, WANG S Z, et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures [J]. Journal of Analytical & Applied Pyrolysis, 2013, 102 (7): 137-143.
|
[29] |
SUN Y H. Heavy metals concentration in sewage sludge of Yangtze River Delta [J]. Environmental Protection Science, 2009, 35 (4): 26-29.
|