CIESC Journal ›› 2017, Vol. 68 ›› Issue (6): 2501-2509.DOI: 10.11949/j.issn.0438-1157.20161754

Previous Articles     Next Articles

Life-cycle greenhouse gas emissions and cost of potassium extraction and CO2 mineralization via K-feldspar—industrial solid waste calcination

MO Chun1, LIAO Wenjie2, LIANG Bin1,2, LI Chun1, YUE Hairong1, XIE Heping2   

  1. 1. School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China;
    2. Institute of New Energy and Low-Carbon Technology, Chengdu 610065, Sichuan, China
  • Received:2016-12-15 Revised:2017-03-07 Online:2017-06-05 Published:2017-06-05
  • Contact: 10.11949/j.issn.0438-1157.20161754
  • Supported by:

    supported by the National Natural Science Foundation of China (21336004)

工业固废活化钾长石-CO2矿化提钾的生命周期碳排放与成本评价

莫淳1, 廖文杰2, 梁斌1,2, 李春1, 岳海荣1, 谢和平2   

  1. 1. 四川大学化学工程学院, 四川 成都 610065;
    2. 四川大学新能源与低碳技术研究院, 四川 成都 610065
  • 通讯作者: 梁斌
  • 基金资助:

    国家自然科学基金重点项目(21336004)

Abstract:

Using industrial solid waste to calcinate non-water-soluble natural K-feldspar for CO2 mineralization and potassium extraction is a multi-functional CO2 capture, utilization and storage (CCUS) technology that can treat industrial solid waste, utilize potassium resource and reduce greenhouse-gas (GHG) emissions. Life cycle assessment (LCA) was adopted based on a functional unit of the produced potash fertilizer containing 1 ton of K2O to compare two emerging technologies of simultaneous potash fertilizer production and CO2 mineralization from K-feldspar and industrial solid waste (CaCl2/phosphor-gypsum) with a traditional technology of potash fertilizer and white cement coproduction by smelting K-feldspar in blast furnace in terms of GHG-reduction potential and economic feasibility. The life-cycle (from raw material exploitation to transportation to production) GHG emissions and life-cycle cost of these technologies were accounted by using an improved allocation approach that considered the credit of avoided GHG emissions/cost from industrial solid waste treatment. The results showed that the two emerging technologies were preferred to the traditional technology in terms of both life-cycle GHG emissions and economic feasibility with GHG-reduction potential of about 81.16% and 20.48%, and cost savings of up to 34.75% and 45.11%, respectively.

Key words: life cycle assessment, K-feldspar, greenhouse gas, CO2 capture, waste treatment

摘要:

利用工业固废活化非水溶性钾长石矿,矿化固定二氧化碳(CO2)并提钾工艺,是同时处理工业固废、开发钾资源、减排CO2等一举多得的CCUS路线。采用生命周期评价(LCA)方法,以生产含1 t K2O的钾肥为功能单元,以传统的高炉冶炼钾长石制可溶性钾肥并联产白水泥工艺作为参照,对比评价了两种钾长石-工业固废体系矿化CO2联产钾肥工艺过程的碳减排潜力和经济性。对工艺从原料开采、运输到产品生产的生命周期的温室气体排放量(简称“碳排放”)和成本进行了全流程的核算,研究了更全面的产品碳排放和成本分配方法。结果表明,无论是碳排放还是经济性,钾长石-工业固废体系矿化CO2联产钾肥工艺均较传统工艺有很大提高,碳减排潜力分别可达81.16%和20.48%左右,成本可节约34.75%和45.11%左右。

关键词: 生命周期评价, 钾长石, 温室气体, 二氧化碳捕集, 废物处理

CLC Number: