[1] |
LEE S,CHOI S U S,LU S,et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. J. Heat Transfer,1999,121:280-289.
|
[2] |
EASTMAN J A,CHOI S U S,LI S,et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl. Phys. Lett.,2001,78:718-720.
|
[3] |
DAS S,PUTRA N,THIESEN P,et al. Temperature dependence of thermal conductivity enhancement for nanofluids[J]. J. Heat Transfer,2003,125:567-574.
|
[4] |
HERIS S Z,ETEMAD S G,ESFAHANY M N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer[J]. Inter. Commun. Heat Mass Transfer,2006,33:529-535.
|
[5] |
HE Y R,JIN Y,CHEN H S,et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. Inter. J. Heat Mass Transfer,2007,50:2272-2281.
|
[6] |
刘冉,夏国栋,杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报,2016,67(12):4936-4943. LIU R,XIA G D,DU M. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal,2016,67(12):4936-4943.
|
[7] |
孙斌,张志敏,杨迪,等. 减阻型纳米流体在圆管内的流动和换热特性[J]. 化工学报,2015,66(11):4401-4411. SUN B,ZHANG Z M,YANG D,et al. Heat transfer and flow resistance characteristics with drag reducing nanofluids in circular tube[J]. CIESC Journal,2015,66(11):4401-4411.
|
[8] |
KOO J,KLEINSTREUER C. A new thermal conductivity model for nanofluids[J]. J. Nanoparticle Res.,2004,6:577-588.
|
[9] |
JANG S P,CHOI S U S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Appl. Phys. Lett.,2006,84:4316-4318.
|
[10] |
HWANG K S,JANG S P,CHOI S U S. Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime[J]. Int. J. Heat Mass Transfer,2009,52:193-199.
|
[11] |
EVANS W,FISH J,KEBLINSKI P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity[J]. Appl. Phys. Lett.,2006,88:093116.
|
[12] |
BUONGIORNO J. Convective transport in nanofluids[J]. J. Heat Transfer,2006,128:240-250.
|
[13] |
SARKAR S,SELVAM R P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids[J]. J. Appl. Phys.,2007,102:074302.
|
[14] |
JORGENSEN W L. Transferable intermolecular potential functions for water,alcohols,and ethers. application to liquid water[J]. J. Am. Chem. Soc.,1981,103(2):335-340.
|
[15] |
BERENDSEN H J C,POSTMA J P M,GUNSTEREN W F,et al. Interaction models for water in relation to protein hydration[M]//PULLMAN A. Intermolecular Forces. Dordrecht:Springer,1981:331-342.
|
[16] |
BERENDSEN H J C,GRIGERA J R,STRAATSMA T P. The missing term in effective pair potentials[J]. J. Phys. Chem.,1987,91(24):6269-6271.
|
[17] |
JORGENSEN W L,CHANDRASEKHAR J,MADURA J D,et al. Comparison of simple potential functions for simulating liquid water[J]. J. Chem. Phys.,1983,79(2):926-935.
|
[18] |
HORN H W,SWOPE W C,PITERA J W,et al. Development of an improved four-site water model for biomolecular simulation:TIP4P-Ew[J]. J. Chem. Phys.,2004,120:9665-9678.
|
[19] |
ABASCAL J L F,SANZ E,FERNANDEZ R G,et al. A potential model for the study of ices and amorphous water:TIP4P/Ice[J]. J. Chem. Phys.,2005,122:234511.
|
[20] |
ABASCAL J L F,VEGA C. A general purpose model for the condensed phases of water:TIP4P/2005[J]. J. Chem. Phys.,2005,123:234505.
|
[21] |
MAHONEY M W,JORGENSEN W L. A five-site model liquid water and the reproduction of the density anomaly by rigid,non-polarizable models[J]. J. Chem. Phys.,2000,112:8910-8922.
|
[22] |
ALLEN M P,TILDESLY D J. Computer Simulation of Liquids[M]. Oxford:Clarendon Press,1987:21-22.
|