[1] |
YU J, RASHID M M. A novel dynamic Bayesian network based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis[J]. AIChE Journal, 2013, 59(7):2348-2365.
|
[2] |
耿志强, 武开英, 韩永明. 基于层次分析的FLANN神经网络研究及应用[J]. 化工学报, 2016, 67(3):805-811. GENG Z Q, WU K Y, HAN Y M. Research and application of FLANN neural network based on analytic hierarchy process[J]. CIESC Journal, 2016, 67(3):805-811.
|
[3] |
ESLAMLOUEYAN R. Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process[J]. Applied Soft Computing, 2011, 11(1):1407-1415.
|
[4] |
NUCHITPRASITTICHAI A, CREMASCHI S. An algorithm to determine sample sizes for optimization with artificial neural networks[J]. AIChE Journal, 2013, 59(3):805-812.
|
[5] |
ZHANG Y W, LI S, TENG Y D. Dynamic processes monitoring using recursive kernel principal component analysis[J]. Chemical Engineering Science, 2012, 72(16):78-86.
|
[6] |
JIANG Q C, YAN X F, ZHAO W X. Fault detection and diagnosis in chemical processes using sensitive principal component analysis[J]. Industrial & Engineering Chemistry Research, 2013, 52(4):1635-1644.
|
[7] |
徐莹, 邓晓刚, 钟娜. 基于ICA混合模型的多工况过程故障诊断方法[J]. 化工学报, 2016, 67(9):3793-3803. XU Y, DENG X G, ZHONG N. A fault diagnosis method for multimode processes based on ICA mixture models[J]. CIESC Journal, 2016, 67(9):3793-3803.
|
[8] |
JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J]. AIChE Journal, 2014, 60(3):949-965.
|
[9] |
YU J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach[J]. Chemical Engineering Science, 2012, 82(1):22-30.
|
[10] |
童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106.
|
[11] |
江伟, 王振雷, 王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2016, 67(2):759-766. JIANG W, WANG Z D, WANG X. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. CIESC Journal, 2016, 67(2):759-766.
|
[12] |
ZHANG Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science, 2009, 64(5):801-811.
|
[13] |
潘吉铮, 周传光, 钱宇. 基于神经网络的化工过程测量数据在线校正技术的研究[J]. 高校化学工程学报, 2003, 17(3):319-324. PAN J Z, ZHOU C G, QIAN Y. On-line data rectification for chemical process measurements based on artificial neural network[J]. J. Chem. Eng. of Chinese Univ., 2003, 17(3):319-324.
|
[14] |
王磊, 邓晓刚, 徐莹, 等. 基于变量子域PCA的故障检测方法[J]. 化工学报, 2016, 67(10):4300-4308. WANG L, DENG X G, XU Y, et al. A fault detection method based on variable sub-region[J]. CIESC Journal, 2016, 67(10):4300-4308.
|
[15] |
衷路生, 何东, 龚锦红, 等. 基于分布式ICA-PCA模型的工业过程故障监测[J]. 化工学报, 2015, 66(11):4546-4554. ZHONG L S, HE D, GONG J H, et al. Industrial process fault monitoring based on distributed ICA-PCA model[J]. CIESC Journal, 2015, 66(11):4546-4554.
|
[16] |
梁晴晴, 韩华, 崔晓钰, 等. 基于主元分析-概率神经网络的制冷系统故障诊断[J]. 化工学报, 2016, 67(3):1022-1031. LIANG Q Q, HAN H, CUI X Y, et al. Fault diagnosis of refrigeration system based on principal component analysis-probabilistic neural network[J]. CIESC Journal, 2016, 67(3):1022-1031.
|
[17] |
VEDAM H, VENKATASUBRAMANIAN V. PCA-SDG based process monitoring and fault diagnosis[J]. Control Engineering Practice, 1999, 7(7):903-917.
|
[18] |
WANG G J, XIE C, CHEN S, et al. Random matrix theory analysis of cross-correlations in the US stock market:evidence from Pearson's correlation coefficient and detrended cross-correlation coefficient[J]. Physica A:Statistical Mechanics and Its Applications, 2013, 392(17):3715-3730.
|
[19] |
ZHOU H, DENG Z, XIA Y, et al. A new sampling method in particle filter based on Pearson correlation coefficient[J]. Neurocomputing, 2016, 216:208-215.
|
[20] |
SALLEH F H M, ARIF S M, ZAINUDIN S, et al. Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient[J]. Computational Biology and Chemistry, 2015, 59:3-14.
|
[21] |
王再英, 白华宁. 基于相关系数的过程系统故障检测与诊断方法[J]. 化工学报, 2013, 64(12):4621-4627. WANG Z Y, BAI H N. A method for fault detection and diagnosis of process system based on correlation coefficient[J]. CIESC Journal, 2013, 64(12):4621-4627.
|
[22] |
卢秉南, 张贝克, 马昕, 等. 基于SDG模型的控制系统故障诊断方法[J]. 化工学报, 2009, 60(9):2243-2251. LU B N, ZHANG B K, MA X, et al. Fault diagnosis of control system based on SDG model[J]. CIESC Journal, 2009, 60(9):2243-2251.
|
[23] |
FAN Y, SHAH S L, XIAO D Y. SDG (signed directed graph) based process description and fault propagation analysis for a tailings pumping process[J]. IFAC Proceedings Volumes, 2010, 43(9):50-55.
|
[24] |
王杭州, 陈丙珍, 何小荣, 等. 基于开源组件的SDG推理平台[J]. 化工学报, 2010, 61(7):1829-1836. WANG H Z, CHEN B Z, HE X R, et al. Open source signed digraph inference framework[J]. CIESC Journal, 2010, 61(7):1829-1836.
|
[25] |
ZHANG B K, XU X, MA X, et al. SDG-based model validation in chemical process simulation[J]. Chinese Journal of Chemical Engineering, 2013, 21(8):876-885.
|
[26] |
GAO D, WU C G, ZHANG B K, et al. Signed directed graph and qualitative trend analysis based fault dianosis in chemical industry[J]. Chinese Journal of Chemical Engineering, 2010, 18(2):265-276.
|
[27] |
XU W, MA R, ZHOU Y, et al. Asymptotic properties of Pearson? s rank-variate correlation coefficient in bivariate normal model[J]. Signal Processing, 2016, 119(C):190-202.
|
[28] |
KIM Y, KIM T H, ERGUN T. The instability of the Pearson correlation coefficient in the presence of coincidencaloutliers[J]. Finance Research Letters, 2015, 13:243-257.
|
[29] |
D'ANGELO M, PALHARES R, CAMARGOS F M, et al. A new fault classification approach applied to Tennessee Eastman benchmark process[J]. Applied Soft Computing, 2016, 49:676-686.
|
[30] |
TIAN W D, SUN S L, GUO Q J. Fault detection and diagnosis for distillation column using two-tier model[J]. The Canadian Journal of Chemical Engineering, 2013, 91(10):1671-1685.
|