CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 2151-2163.DOI: 10.11949/0438-1157.20191518
• Process system engineering • Previous Articles Next Articles
Mingyue DENG1(),Jianchang LIU1(),Peng XU1,Shubin TAN1,Liangliang SHANG2
Received:
2019-12-17
Revised:
2020-02-14
Online:
2020-05-05
Published:
2020-05-05
Contact:
Jianchang LIU
通讯作者:
刘建昌
作者简介:
邓明月(1995—),女,硕士研究生,基金资助:
CLC Number:
Mingyue DENG, Jianchang LIU, Peng XU, Shubin TAN, Liangliang SHANG. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA[J]. CIESC Journal, 2020, 71(5): 2151-2163.
邓明月, 刘建昌, 许鹏, 谭树彬, 商亮亮. 基于KECA的非线性工业过程故障检测与诊断新方法[J]. 化工学报, 2020, 71(5): 2151-2163.
Add to citation manager EndNote|Ris|BibTeX
故障 类型 | KECA | KPCA | ||
---|---|---|---|---|
VoA | CS | T2 | T2 | |
1 | 62 | 48.4 | 48.8 | 42.4 |
2 | 98.75 | 94.25 | 92.25 | 92 |
Table 1 Fault detection rate of two minor faults/%
故障 类型 | KECA | KPCA | ||
---|---|---|---|---|
VoA | CS | T2 | T2 | |
1 | 62 | 48.4 | 48.8 | 42.4 |
2 | 98.75 | 94.25 | 92.25 | 92 |
故障 序号 | FDR/% | FAR/% | DL/num | ||||||
---|---|---|---|---|---|---|---|---|---|
KECA | KPCA | KECA | KPCA | KECA | KPCA | ||||
T2 | VoA | T2 | T2 | VoA | T2 | T2 | VoA | T2 | |
1 | 99.75 | 99.88 | 99.13 | 0 | 0 | 0 | 2 | 1 | 7 |
2 | 98.13 | 99.25 | 98.38 | 0 | 0 | 0 | 15 | 14 | 14 |
4 | 100 | 100 | 58.88 | 0 | 0 | 0.63 | 0 | 0 | 2 |
5 | 24.63 | 27.13 | 24.75 | 0 | 0 | 0.63 | 0 | 0 | 0 |
6 | 100 | 100 | 99.13 | 0 | 0 | 0.63 | 0 | 0 | 8 |
7 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 97.38 | 97.75 | 97 | 0 | 0 | 1.25 | 19 | 18 | 25 |
10 | 69.13 | 73.5 | 30.38 | 0 | 0 | 0 | 26 | 26 | 57 |
11 | 74.25 | 77.85 | 55.25 | 0 | 1.25 | 0 | 5 | 5 | 5 |
12 | 99.13 | 99.38 | 98.63 | 3.75 | 1.25 | 1.25 | 2 | 2 | 2 |
13 | 95.13 | 95.25 | 93.63 | 0 | 0 | 0 | 37 | 37 | 48 |
14 | 100 | 100 | 99.88 | 0 | 0 | 0.63 | 0 | 0 | 0 |
16 | 85.85 | 87.88 | 14 | 6.88 | 2.5 | 2.5 | 6 | 6 | 297 |
17 | 92.88 | 94.13 | 80.25 | 0 | 0 | 0.63 | 23 | 21 | 28 |
18 | 89.63 | 89.75 | 89.38 | 0 | 0 | 1.25 | 84 | 84 | 87 |
19 | 15.75 | 24.38 | 13.75 | 0 | 0 | 0 | 10 | 10 | 10 |
20 | 47.38 | 53 | 37.88 | 0 | 0 | 0.63 | 87 | 84 | 84 |
21 | 42.5 | 50 | 42 | 0 | 0 | 1.25 | 494 | 449 | 505 |
平均值 | 79.53 | 81.55 | 68.46 | 0.59 | 0.28 | 0.62 | 45 | 42 | 65 |
Table 2 Fault detection rate, false alarm rate and detection latency of 21 faults in TE process
故障 序号 | FDR/% | FAR/% | DL/num | ||||||
---|---|---|---|---|---|---|---|---|---|
KECA | KPCA | KECA | KPCA | KECA | KPCA | ||||
T2 | VoA | T2 | T2 | VoA | T2 | T2 | VoA | T2 | |
1 | 99.75 | 99.88 | 99.13 | 0 | 0 | 0 | 2 | 1 | 7 |
2 | 98.13 | 99.25 | 98.38 | 0 | 0 | 0 | 15 | 14 | 14 |
4 | 100 | 100 | 58.88 | 0 | 0 | 0.63 | 0 | 0 | 2 |
5 | 24.63 | 27.13 | 24.75 | 0 | 0 | 0.63 | 0 | 0 | 0 |
6 | 100 | 100 | 99.13 | 0 | 0 | 0.63 | 0 | 0 | 8 |
7 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 97.38 | 97.75 | 97 | 0 | 0 | 1.25 | 19 | 18 | 25 |
10 | 69.13 | 73.5 | 30.38 | 0 | 0 | 0 | 26 | 26 | 57 |
11 | 74.25 | 77.85 | 55.25 | 0 | 1.25 | 0 | 5 | 5 | 5 |
12 | 99.13 | 99.38 | 98.63 | 3.75 | 1.25 | 1.25 | 2 | 2 | 2 |
13 | 95.13 | 95.25 | 93.63 | 0 | 0 | 0 | 37 | 37 | 48 |
14 | 100 | 100 | 99.88 | 0 | 0 | 0.63 | 0 | 0 | 0 |
16 | 85.85 | 87.88 | 14 | 6.88 | 2.5 | 2.5 | 6 | 6 | 297 |
17 | 92.88 | 94.13 | 80.25 | 0 | 0 | 0.63 | 23 | 21 | 28 |
18 | 89.63 | 89.75 | 89.38 | 0 | 0 | 1.25 | 84 | 84 | 87 |
19 | 15.75 | 24.38 | 13.75 | 0 | 0 | 0 | 10 | 10 | 10 |
20 | 47.38 | 53 | 37.88 | 0 | 0 | 0.63 | 87 | 84 | 84 |
21 | 42.5 | 50 | 42 | 0 | 0 | 1.25 | 494 | 449 | 505 |
平均值 | 79.53 | 81.55 | 68.46 | 0.59 | 0.28 | 0.62 | 45 | 42 | 65 |
数据集 | 描述 | 样本数 |
---|---|---|
F01H~F21H | 故障1~故障21的历史故障模式数据集 | 480 |
F01E~F21E | 故障1~故障21的早期数据集 | 200 |
F01T~F21T | 故障1~故障21的测试数据集 | 800 |
Table 3 TE process datasets for fault identification
数据集 | 描述 | 样本数 |
---|---|---|
F01H~F21H | 故障1~故障21的历史故障模式数据集 | 480 |
F01E~F21E | 故障1~故障21的早期数据集 | 200 |
F01T~F21T | 故障1~故障21的测试数据集 | 800 |
故障测试数据集 | |||||||
---|---|---|---|---|---|---|---|
F01T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F02T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F03T | 15 | 0 | 2 | 8 | 0 | 13.3 | 53.3 |
F04T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F05T | 15 | 2 | 3 | 13 | 13.3 | 20 | 86.7 |
F06T | 15 | 14 | 9 | 13 | 93.33 | 60 | 86.7 |
F07T | 15 | 13 | 15 | 14 | 86.7 | 100 | 93.3 |
F08T | 15 | 8 | 8 | 13 | 53.3 | 53.3 | 86.7 |
F09T | 15 | 3 | 4 | 7 | 20 | 26.7 | 46.7 |
F10T | 15 | 6 | 5 | 8 | 40 | 33.3 | 53.3 |
F11T | 15 | 14 | 12 | 12 | 93.3 | 80 | 80 |
F12T | 15 | 9 | 11 | 15 | 60 | 73.3 | 100 |
F13T | 15 | 4 | 2 | 8 | 26.7 | 13.3 | 53.3 |
F14T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F15T | 15 | 0 | 5 | 9 | 0 | 33.3 | 60 |
F16T | 15 | 6 | 9 | 10 | 40 | 60 | 66.7 |
F17T | 15 | 15 | 15 | 14 | 100 | 100 | 93.3 |
F18T | 15 | 11 | 12 | 11 | 73.3 | 80 | 73.3 |
F19T | 15 | 13 | 14 | 7 | 86.7 | 93.3 | 46.7 |
F20T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F21T | 15 | 12 | 13 | 11 | 80 | 86.7 | 73.3 |
平均值 | 15 | 9.8 | 10.2 | 11.8 | 65.1 | 67.9 | 78.7 |
Table 4 Identification results of TE process fault test data set
故障测试数据集 | |||||||
---|---|---|---|---|---|---|---|
F01T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F02T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F03T | 15 | 0 | 2 | 8 | 0 | 13.3 | 53.3 |
F04T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F05T | 15 | 2 | 3 | 13 | 13.3 | 20 | 86.7 |
F06T | 15 | 14 | 9 | 13 | 93.33 | 60 | 86.7 |
F07T | 15 | 13 | 15 | 14 | 86.7 | 100 | 93.3 |
F08T | 15 | 8 | 8 | 13 | 53.3 | 53.3 | 86.7 |
F09T | 15 | 3 | 4 | 7 | 20 | 26.7 | 46.7 |
F10T | 15 | 6 | 5 | 8 | 40 | 33.3 | 53.3 |
F11T | 15 | 14 | 12 | 12 | 93.3 | 80 | 80 |
F12T | 15 | 9 | 11 | 15 | 60 | 73.3 | 100 |
F13T | 15 | 4 | 2 | 8 | 26.7 | 13.3 | 53.3 |
F14T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F15T | 15 | 0 | 5 | 9 | 0 | 33.3 | 60 |
F16T | 15 | 6 | 9 | 10 | 40 | 60 | 66.7 |
F17T | 15 | 15 | 15 | 14 | 100 | 100 | 93.3 |
F18T | 15 | 11 | 12 | 11 | 73.3 | 80 | 73.3 |
F19T | 15 | 13 | 14 | 7 | 86.7 | 93.3 | 46.7 |
F20T | 15 | 15 | 15 | 15 | 100 | 100 | 100 |
F21T | 15 | 12 | 13 | 11 | 80 | 86.7 | 73.3 |
平均值 | 15 | 9.8 | 10.2 | 11.8 | 65.1 | 67.9 | 78.7 |
1 | Yin S, Ding S X, Haghani A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
2 | Ge Z Q, Song Z H, Gao F R. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
3 | 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 26-38. |
Liu Q, Zhuo J, Lang Z Q, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica, 2018, 44(11): 26-38. | |
4 | 赵帅, 宋冰, 侍洪波. 基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69(3): 962-973. |
Zhao S, Song B, Shi H B. Quality-related fault detection based on weighted mutual information principal component analysis[J]. CIESC Journal, 2018, 69(3): 962-973. | |
5 | 于飞, 王红蛟. 基于主元分析与偏最小二乘故障诊断算法的研究[J]. 化工自动化及仪表, 2014, 41(8): 881-883. |
Yu F, Wang H J. Fault diagnosis algorithm research based on principal component analysis and partial least squares[J]. Control and Instruments in Chemical Industry, 2014, 41(8): 881-883. | |
6 | Ge Z Q, Xie L, Kruger U, et al. Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions[J]. AIChE Journal, 2012, 58(8): 2357-2366. |
7 | Deng X G, Tian X M, Chen S, et al. Nonlinear process fault diagnosis based on serial principal component analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(3): 560-572. |
8 | 蔡连芳, 田学民, 张妮. 一种基于改进KICA的非高斯过程故障检测方法[J]. 化工学报, 2012, 63(9): 2864-2868. |
Cai L F, Tian X M, Zhang N. Non-Gaussian process fault detection method based on modified KICA[J]. CIESC Journal, 2012, 63(9): 2864-2868. | |
9 | Wang H, Yao M. Fault detection of batch processes based on multivariate functional kernel principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149(9): 78-89. |
10 | Zhao C H, Huang B. Incipient fault detection for complex industrial processes with stationary and nonstationary hybrid characteristics[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 5045-5057. |
11 | Jenssen R. Kernel entropy component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 847-860. |
12 | Chen J Y, Yu J. Independent component analysis mixture model based dissimilarity method for performance monitoring of non-Gaussian dynamic processes with shifting operating conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5055-5066. |
13 | Gomez-Chova L, Jenssen R, Camps-Valls G. Kernel entropy component analysis for remote sensing image clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 312-316. |
14 | Shekar B H, Kumari M S, Mestetskiy L M, et al. Face recognition using kernel entropy component analysis[J]. Neurocomputing, 2011, 74(6): 1053-1057. |
15 | Li Y Y, Wang Y, Jiao L, et al. Quantum clustering using kernel entropy component analysis[J]. Neurocomputing, 2016, 202(3): 36-48. |
16 | Jiang Q C, Yan X F, Lv Z M, et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6): 1181-1186. |
17 | Yang Y H, Li X L, Liu X Z, et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147(5): 395-402. |
18 | 齐咏生, 张海利, 高学金, 等. 基于KECA的化工过程故障监测新方法[J]. 化工学报, 2016, 67(3): 1063-1069. |
Qi Y S, Zhang H L, Gao X J, et al. Novel fault monitoring strategy for chemical process based on KECA[J]. CIESC Journal, 2016, 67(3): 1063-1069. | |
19 | Miller P, Swanson R E, Heckler C E. Contribution plots: a missing link in multivariate quality control[J]. Appl. Math. Comput. Sci., 1998, 8(4): 775-792. |
20 | Macgregor J F, Kourti T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403-414. |
21 | Karpenko M, Sepehri N, Scuse D. Diagnosis of process valve actuator faults using a multilayer neural network[J]. Control Engineering Practice, 2003, 11(11): 1289-1299. |
22 | Chiang L H, Kotanchek M E, Kordon A K. Fault diagnosis based on Fisher discriminant analysis and support vector machines[J]. Computers & Chemical Engineering, 2004, 28(8): 1389-1401. |
23 | Johannesmeyer M C, Singhal A, Seborg D E. Pattern matching in historical data[J]. AIChE Journal, 2002, 48(9):2022-2038. |
24 | Singhal A, Seborg D. Pattern matching in historical batch data using PCA[J]. IEEE Control Systems Magazine, 2002, 22(5): 53-63. |
25 | Deng X G, Tian X M. Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor[J]. Neurocomputing, 2013, 121: 298-308. |
26 | Kriegel H P, Schubert M, Zimek A. Angle-based outlier detection in high-dimensional data[C]// Proc. 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, Nevada, USA: ACM, 2008: 444-452. |
27 | Shao J D, Rong G, Lee J M. Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring[J]. Chemical Engineering Research & Design, 2009, 87(11):1471-1480. |
28 | Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
29 | Downs J J, Vogel E F. A plant-wide industrial process control problem[J]. Computers Chem. Engng., 1993, 17(3): 245-255. |
30 | Lyman P R, Georgakis C. Plant-wide control of the Tennessee Eastman problem[J]. Computers and Chemical Engineering, 1995, 19(3):321-331. |
31 | 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 316-329. |
Gu B B, Xiong W L. Fault diagnosis based on PCA method with multi-block information extraction[J]. CIESC Journal, 2019, 70(2): 316-329. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||