CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 2175-2182.DOI: 10.11949/j.issn.0438-1157.20171065
Previous Articles Next Articles
FAN Peng, CHEN Jie, GUAN Xiaohong, QIAO Junlian
Received:
2017-08-08
Revised:
2017-10-23
Online:
2018-05-05
Published:
2018-05-05
Supported by:
supported by the National Natural Science Foundation of China (21522704, 51478329).
樊鹏, 陈杰, 关小红, 乔俊莲
通讯作者:
乔俊莲
基金资助:
国家自然科学基金项目(21522704,51478329)。
[1] | OHKUMA Y, KAWANISHI S. Oxidative DNA damage by a metabolite of carcinogenic and reproductive toxic nitrobenzene in the presence of NADH and Cu(Ⅱ)[J]. Biochem. Biophys. Res. Commun., 1999, 257(2):555-560. |
[2] | BHATKHANDE D S, PANGARKAR V G, BEENACKERS A C M. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation:chemical effects and scaleup[J]. Water Res., 2003, 37(6):1223-1230. |
[3] | CONTRERAS S, RODRIGUEZ M, CHAMARRO E, et al. Oxidation of nitrobenzene by O3/UV:the influence of H2O2 and Fe(Ⅲ):experiences in a pilot plant[J]. Water Sci. Technol., 2001, 44(5):39-46. |
[4] | RODRIGUEZ M, TIMOKHIN V, MICHL F, et al. The influence of different irradiation sources on the treatment of nitrobenzene[J]. Catal. Today, 2002, 76(2):291-300. |
[5] | SARASA J, ROCHE M P, ORMAD M P, et al. Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation[J]. Water Res., 1998, 32(9):2721-2727. |
[6] | DONG J, ZHAO Y, ZHAO R, et al. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron[J]. J. Environ. Sci., 2010, 22(11):1741-1747. |
[7] | RAZO-FLORES E, DONLON B, LETTINGA G, et al. Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge[J]. FEMS Microbiol. Rev., 1997, 20(3/4):525-538. |
[8] | GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Res., 2015, 75(1):224-248. |
[9] | LIN C J, LO S L. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system[J]. Water Res., 2005, 39:1037-1046. |
[10] | GEIGER C L, RUIZ N E, CLAUSEN C A, et al. Ultrasound pretreatment of elemental iron:kinetic studies of dehalogenation reaction enhancement and surface effects[J]. Water Res., 2002, 36:1342-1350. |
[11] | GOTPAGAR J, LYUKSYUTOVM S, COHN R, et al. Reductive dehalogenation of trichloroethylene with zero-valent iron:surface profiling microscopy and rate enhancement studies[J]. Langmuir, 1999, 15:8412-8420. |
[12] | LIEN H L, ZHANG W X. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al[J]. Chemosphere, 2002, 49:371-378. |
[13] | LIN C J, LO S L, LIOU Y H. Dechlorination of trichloroethylene in aqueous solution by noble metal modified iron[J]. J. Hazard. Mater., 2004, 116:219-228. |
[14] | SCHRICK B, BLOUGH J L, JONES A D, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chem. Mater., 2002, 14:5140-5147. |
[15] | HUNG H M, HOFFMANN M R, Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound[J]. Environ. Sci. Technol., 1998, 32:3011-3016. |
[16] | NORADOUN C E, CHENG I F. EDTA degradation induced by oxygen activation in a zero-valent iron/air/water system[J]. Environ. Sci. Technol., 2005, 39:7158-7163. |
[17] | COMBA S, DI M A, SETHI R. A comparison between field applications of nano-, micro-, and millimetric zerovalent iron for the remediation of contaminated aquifers[J]. Water Air Soil Pollut., 2011, 215:595-607. |
[18] | KANEL S R, NEPAL D, MANNING B, et al. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(Ⅲ) remediation[J]. J. Nanopart. Res., 2007, 9:725-735. |
[19] | SALEH N, KIM H J, PHENRAT T, et al. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water saturated sand columns[J]. Environ. Sci. Technol., 2008, 42:3349-3355. |
[20] | GUO X J, YANG Z, DONG H Y, et al. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water[J]. Water Res., 2016, 88(1):671-680. |
[21] | TENG Y. Sulfate radical and its application in decontamination technologies[J]. Environ. Sci. Technol., 2015, 45(16):1756-1800. |
[22] | CHUNG T V, ANH T Q, PHUNG D Q, et al. Degradation of nitrobenzene by persulfate activated with zero-valent iron[J]. Asian J. Chem., 2012, 24(3):1371. |
[23] | 杨世迎, 杨鑫, 梁婷, 等. 零价铁还原和过硫酸盐氧化联合降解水中硝基苯[J]. 环境化学, 2012, 31(5):682-686. YANG S Y, YANG X, LIANG T, et al. Degradation of nitrobenzene by the combined system of zero-valent iron reduction and persulfate oxidation[J]. Environmental Chemistry, 2012, 31(5):682-686. |
[24] | 杨世迎, 马楠, 王静, 等. 零价铁/过二硫酸盐去除水中硝基苯的还原与氧化机理[J]. 环境化学, 2013, 32(11):2127-2133. YANG S Y, MA N, WANG J, et al. Reduction and oxidation reaction mechanism of nitrobenzene removal by zero-valent iron and persulfate[J]. Environmental Chemistry, 2013, 32(11):2127-2133. |
[25] | HENNESSY D J, REID G R, SMITH F E, et al. Ferene-a new spectrophotometric reagent for iron[J]. Can. J. Chem., 2011, 62(62):721-724. |
[26] | BI E, BOWEN I, DEVLIN J F. Effect of mixed anions (HCO3--SO42--ClO4-) on granular iron (Fe0) reactivity[J]. Environ. Sci. Technol., 2009, 43(15):5975-5981. |
[27] | YIN W, WU J, LI P, et al. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater:the effects of pH, iron dosage, oxygen and common dissolved anions[J]. Chem. Eng. J., 2012, 184(3):198-204. |
[28] | HUANG Y H, ZHANG T C. Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems[J]. Water Res., 2006, 40(16):3075-3082. |
[29] | GUO X, YANG Z, LIU H, et al. Common oxidants activate the reactivity of zero-valent iron (ZVI) and hence remarkably enhance nitrate reduction from water[J]. Sep. Purif. Technol., 2015, 146(1):227-234. |
[30] | AGRAWAL A, TRATNYEK P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J]. Environ. Sci. Technol., 1996, 30(1):153-160. |
[31] | MU Y, YU H Q, ZHENG J C, et al. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron[J]. Chemosphere, 2004, 54(7):789-794. |
[32] | OHSAKA T, OHNUKI Y, OYAMA N, et al. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline[J]. J. Electroanal. Chem. Interfac., 1984, 161(2):399-405. |
[33] | CORNELL R M, SCHWERTMANN U. The Iron Oxides:Structure, Properties, Reactions, Cocurences and Uses[M]. 2nd ed. New York:Wliey-VHM GmbH & Co. KGaA., 2004:142-144. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress [J]. CIESC Journal, 2023, 74(6): 2599-2610. |
[7] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[10] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[11] | Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry [J]. CIESC Journal, 2023, 74(2): 585-598. |
[12] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[13] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[14] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[15] | Lei WANG, Yong JIANG, Dazhong ZHONG, Jiayuan LI, Genyan HAO, Qiang ZHAO, Jinping LI. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol [J]. CIESC Journal, 2022, 73(8): 3576-3585. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 360
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||