[1] |
OHKUMA Y, KAWANISHI S. Oxidative DNA damage by a metabolite of carcinogenic and reproductive toxic nitrobenzene in the presence of NADH and Cu(Ⅱ)[J]. Biochem. Biophys. Res. Commun., 1999, 257(2):555-560.
|
[2] |
BHATKHANDE D S, PANGARKAR V G, BEENACKERS A C M. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation:chemical effects and scaleup[J]. Water Res., 2003, 37(6):1223-1230.
|
[3] |
CONTRERAS S, RODRIGUEZ M, CHAMARRO E, et al. Oxidation of nitrobenzene by O3/UV:the influence of H2O2 and Fe(Ⅲ):experiences in a pilot plant[J]. Water Sci. Technol., 2001, 44(5):39-46.
|
[4] |
RODRIGUEZ M, TIMOKHIN V, MICHL F, et al. The influence of different irradiation sources on the treatment of nitrobenzene[J]. Catal. Today, 2002, 76(2):291-300.
|
[5] |
SARASA J, ROCHE M P, ORMAD M P, et al. Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation[J]. Water Res., 1998, 32(9):2721-2727.
|
[6] |
DONG J, ZHAO Y, ZHAO R, et al. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron[J]. J. Environ. Sci., 2010, 22(11):1741-1747.
|
[7] |
RAZO-FLORES E, DONLON B, LETTINGA G, et al. Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge[J]. FEMS Microbiol. Rev., 1997, 20(3/4):525-538.
|
[8] |
GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Res., 2015, 75(1):224-248.
|
[9] |
LIN C J, LO S L. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system[J]. Water Res., 2005, 39:1037-1046.
|
[10] |
GEIGER C L, RUIZ N E, CLAUSEN C A, et al. Ultrasound pretreatment of elemental iron:kinetic studies of dehalogenation reaction enhancement and surface effects[J]. Water Res., 2002, 36:1342-1350.
|
[11] |
GOTPAGAR J, LYUKSYUTOVM S, COHN R, et al. Reductive dehalogenation of trichloroethylene with zero-valent iron:surface profiling microscopy and rate enhancement studies[J]. Langmuir, 1999, 15:8412-8420.
|
[12] |
LIEN H L, ZHANG W X. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al[J]. Chemosphere, 2002, 49:371-378.
|
[13] |
LIN C J, LO S L, LIOU Y H. Dechlorination of trichloroethylene in aqueous solution by noble metal modified iron[J]. J. Hazard. Mater., 2004, 116:219-228.
|
[14] |
SCHRICK B, BLOUGH J L, JONES A D, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chem. Mater., 2002, 14:5140-5147.
|
[15] |
HUNG H M, HOFFMANN M R, Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound[J]. Environ. Sci. Technol., 1998, 32:3011-3016.
|
[16] |
NORADOUN C E, CHENG I F. EDTA degradation induced by oxygen activation in a zero-valent iron/air/water system[J]. Environ. Sci. Technol., 2005, 39:7158-7163.
|
[17] |
COMBA S, DI M A, SETHI R. A comparison between field applications of nano-, micro-, and millimetric zerovalent iron for the remediation of contaminated aquifers[J]. Water Air Soil Pollut., 2011, 215:595-607.
|
[18] |
KANEL S R, NEPAL D, MANNING B, et al. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(Ⅲ) remediation[J]. J. Nanopart. Res., 2007, 9:725-735.
|
[19] |
SALEH N, KIM H J, PHENRAT T, et al. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water saturated sand columns[J]. Environ. Sci. Technol., 2008, 42:3349-3355.
|
[20] |
GUO X J, YANG Z, DONG H Y, et al. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water[J]. Water Res., 2016, 88(1):671-680.
|
[21] |
TENG Y. Sulfate radical and its application in decontamination technologies[J]. Environ. Sci. Technol., 2015, 45(16):1756-1800.
|
[22] |
CHUNG T V, ANH T Q, PHUNG D Q, et al. Degradation of nitrobenzene by persulfate activated with zero-valent iron[J]. Asian J. Chem., 2012, 24(3):1371.
|
[23] |
杨世迎, 杨鑫, 梁婷, 等. 零价铁还原和过硫酸盐氧化联合降解水中硝基苯[J]. 环境化学, 2012, 31(5):682-686. YANG S Y, YANG X, LIANG T, et al. Degradation of nitrobenzene by the combined system of zero-valent iron reduction and persulfate oxidation[J]. Environmental Chemistry, 2012, 31(5):682-686.
|
[24] |
杨世迎, 马楠, 王静, 等. 零价铁/过二硫酸盐去除水中硝基苯的还原与氧化机理[J]. 环境化学, 2013, 32(11):2127-2133. YANG S Y, MA N, WANG J, et al. Reduction and oxidation reaction mechanism of nitrobenzene removal by zero-valent iron and persulfate[J]. Environmental Chemistry, 2013, 32(11):2127-2133.
|
[25] |
HENNESSY D J, REID G R, SMITH F E, et al. Ferene-a new spectrophotometric reagent for iron[J]. Can. J. Chem., 2011, 62(62):721-724.
|
[26] |
BI E, BOWEN I, DEVLIN J F. Effect of mixed anions (HCO3--SO42--ClO4-) on granular iron (Fe0) reactivity[J]. Environ. Sci. Technol., 2009, 43(15):5975-5981.
|
[27] |
YIN W, WU J, LI P, et al. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater:the effects of pH, iron dosage, oxygen and common dissolved anions[J]. Chem. Eng. J., 2012, 184(3):198-204.
|
[28] |
HUANG Y H, ZHANG T C. Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems[J]. Water Res., 2006, 40(16):3075-3082.
|
[29] |
GUO X, YANG Z, LIU H, et al. Common oxidants activate the reactivity of zero-valent iron (ZVI) and hence remarkably enhance nitrate reduction from water[J]. Sep. Purif. Technol., 2015, 146(1):227-234.
|
[30] |
AGRAWAL A, TRATNYEK P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J]. Environ. Sci. Technol., 1996, 30(1):153-160.
|
[31] |
MU Y, YU H Q, ZHENG J C, et al. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron[J]. Chemosphere, 2004, 54(7):789-794.
|
[32] |
OHSAKA T, OHNUKI Y, OYAMA N, et al. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline[J]. J. Electroanal. Chem. Interfac., 1984, 161(2):399-405.
|
[33] |
CORNELL R M, SCHWERTMANN U. The Iron Oxides:Structure, Properties, Reactions, Cocurences and Uses[M]. 2nd ed. New York:Wliey-VHM GmbH & Co. KGaA., 2004:142-144.
|