CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 1-7.DOI: 10.11949/0438-1157.20221644
• Reviews and monographs • Previous Articles Next Articles
Runmiao GAO1(), Mengjie SONG1(
), Enyuan GAO2, Long ZHANG1, Xuan ZHANG1, Keke SHAO1, Zekang ZHEN1, Zhengyong JIANG1
Received:
2022-11-19
Revised:
2022-12-26
Online:
2023-09-27
Published:
2023-06-05
Contact:
Mengjie SONG
高润淼1(), 宋孟杰1(
), 高恩元2, 张龙1, 张旋1, 邵苛苛1, 甄泽康1, 江正勇1
通讯作者:
宋孟杰
作者简介:
高润淼(1998—),男,博士研究生,runmiao.gao@bit.edu.cn
基金资助:
CLC Number:
Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain[J]. CIESC Journal, 2023, 74(S1): 1-7.
高润淼, 宋孟杰, 高恩元, 张龙, 张旋, 邵苛苛, 甄泽康, 江正勇. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7.
行业 | 传统制冷剂 | 替代制冷剂 | 发展建议 | ||
---|---|---|---|---|---|
HFOs | HCs | 自然制冷剂 | |||
冷加工装备 | R134a | R1234yf(17%) | R290/R1270/R600a(27.5%/26.3%/1.2%) | R744(3.9%) | HCs制冷剂 |
冷冻冷藏装备 | R404A | R448A(11%) | — | R717(—) | CO2制冷系统 |
冷藏运输装备 | R404A | R1234yf/R1234ze(—) | R290(16%) | R744(—) | 余热、余冷利用 |
冷藏销售装备 | R404A/R134a | — | R290/R600a(5%/20%) | R744(—) | CO2制冷系统 |
Table 1 Summary of research results and development suggestions on refrigerant substitution in cold chain industry
行业 | 传统制冷剂 | 替代制冷剂 | 发展建议 | ||
---|---|---|---|---|---|
HFOs | HCs | 自然制冷剂 | |||
冷加工装备 | R134a | R1234yf(17%) | R290/R1270/R600a(27.5%/26.3%/1.2%) | R744(3.9%) | HCs制冷剂 |
冷冻冷藏装备 | R404A | R448A(11%) | — | R717(—) | CO2制冷系统 |
冷藏运输装备 | R404A | R1234yf/R1234ze(—) | R290(16%) | R744(—) | 余热、余冷利用 |
冷藏销售装备 | R404A/R134a | — | R290/R600a(5%/20%) | R744(—) | CO2制冷系统 |
1 | Zhao H X, Liu S, Tian C Q, et al. An overview of current status of cold chain in China[J]. International Journal of Refrigeration, 2018, 88: 483-495. |
2 | 申江, 杨萌. 食品冷链的技术发展[J]. 包装工程, 2015, 36(15): 1-8, 72. |
Shen J, Yang M. Technological development of food cold chain[J]. Packaging Engineering, 2015, 36(15): 1-8, 72. | |
3 | Gao E Y, Cui Q, Jing H Q, et al. A review of application status and replacement progress of refrigerants in the Chinese cold chain industry[J]. International Journal of Refrigeration, 2021, 128: 104-117. |
4 | Guilpart J, 邵月月, 范薇, 等. 冷链技术简介——第Ⅳ部分 食品生产加工中的制冷[J]. 制冷技术, 2021, 41(4): 102-105. |
Guilpart J, Shao Y Y, Fan W, et al. Cold chain technology brief(Part Ⅳ): Refrigeration in food production and processing[J]. Chinese Journal of Refrigeration Technology, 2021, 41(4): 102-105. | |
5 | Koundinya S, Energy Seshadri S., exergy, environmental, and economic (4 E) analysis and selection of best refrigerant using TOPSIS method for industrial heat pumps[J]. Thermal Science and Engineering Progress, 2022, 36: 101491. |
6 | Halon T, Gil B, Zajaczkowski B. Comparative investigation of low-GWP binary and ternary blends as potential replacements of HFC refrigerants for air conditioning systems[J]. Applied Thermal Engineering, 2022, 210: 118354. |
7 | 宁静红, 刘圣春. R744直接接触冷凝制冷循环性能分析[J]. 化工学报, 2018, 69(5): 2049-2056. |
Ning J H, Liu S C. Performance analysis on R744 direct contact condensation refrigeration cycle[J]. CIESC Journal, 2018, 69(5): 2049-2056. | |
8 | Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1247-1264. |
9 | Sun Y J, Wei Q M, Wang X D, et al. Absorption separation of hydrofluorocarbon/hydrofluoroolefin refrigerant mixtures using ionic liquids[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12787-12796. |
10 | Li J W, Yang Z, Duan Y Y. Experimental study on single bubble growth of R32+R1234yf binary mixtures during saturated pool boiling[J]. Applied Thermal Engineering, 2023, 219: 119535. |
11 | Li L C, Wei X L, Zhou S L, et al. One-pot cascade catalysis of dehydrochlorination of greenhouse gas HCFC-142b and hydrochlorination of acetylene for the spontaneous production of VDF and VCM[J]. ACS ES&T Engineering, 2022, 2(1): 121-128. |
12 | Apreaa C, Grecob A, Maiorinoa A. HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: energy analysis and environmental impact assessment[J]. Applied Thermal Engineering, 2018, 141: 226-233. |
13 | Yang J Y, Ye Z H, Yu B B, et al. Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for organic rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)[J]. Energy, 2019, 173: 721-731. |
14 | Alba C G, Vega L F, Llovell F. A consistent thermodynamic molecular model of n-hydrofluoroolefins and blends for refrigeration applications[J]. International Journal of Refrigeration, 2020, 113: 145-155. |
15 | Gaurav R K. Computational energy and exergy analysis of R134a, R1234yf, R1234ze and their mixtures in vapour compression system[J]. Ain Shams Engineering Journal, 2018, 9: 3229-3237. |
16 | Zhai R, Yang Z, Zhuang Y, et al. Combustion characteristic of 2,3,3,3-tetrafluroropropene (R1234yf)[J]. International Journal of Refrigeration, 2022, 144: 65-75. |
17 | Zhang S J, Wang H X, Guo T. Evaluation of non-azeotropic mixtures containing HFOs as potential refrigerants in refrigeration and high-temperature heat pump systems[J]. Science China-Technological Sciences, 2010, 53(7): 1855-1861. |
18 | Sanchez D, Andreu-Nacher A, Calleja-Anta D, et al. Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744[J]. Energy Conversion and Management, 2022, 256: 115388. |
19 | Gao E Y, Zhang Z B, Deng Q Q, et al. Techno-economic and environmental analysis of low-GWP alternative refrigerants in cold storage unit under year-round working conditions[J]. International Journal of Refrigeration, 2022, 134: 197-206. |
20 | Zhang L, Yang Z, Zhai R, et al. Flammable performance and experimental evaluation of a new blend as R404A lower-GWP alternative[J]. International Journal of Refrigeration, 2022, 135: 113-120. |
21 | Evans J, 邵月月, 范薇, 等. 冷链技术简介(Ⅰ): 冷藏库和冷冻库[J]. 制冷技术, 2021, 41(4): 88-93. |
Evans J, Shao Y Y, Fan W, et al. Cold chain technology brief(Ⅰ): Cold storage and refrigerated warehouse[J]. Chinese Journal of Refrigeration Technology, 2021, 41(4): 88-93. | |
22 | 任立乾, 黄志刚, 马海云. 低GWP制冷剂R448A和R449A在涡旋压缩机中的特性分析[J]. 制冷技术, 2019, 39(3): 42-45, 61. |
Ren L Q, Huang Z G, MA·h Y. Analysis on characteristics of low gwp refrigerants of R448A and R449A in scroll compressor[J]. Chinese Journal of Refrigeration Technology, 2019, 39(3): 42-45, 61. | |
23 | Deng Q Q, Zhang Z, Hu X. Thermoeconomic and environmental analysis of an inverter cold storage unit charged R448A[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101159. |
24 | Mota-Babiloni A, Navarro-Esbri J, Penis B, et al. Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems[J]. Energy Conversion and Management, 2015, 105: 756-762. |
25 | 唐俊杰, 柳琳, 李鹏, 等. 氨制冷剂应用与冷链可持续发展建议[J]. 冷藏技术, 2019, 42(2): 1-4. |
Tang J J, Liu L, Li P, et al. Application of ammonia refrigerant and sustainable development of cold chain[J]. Journal of Refrigeration Technology, 2019, 42(2): 1-4. | |
26 | 唐俊杰, 王昕, 张海南, 等. 氨系统循环倍率对换热影响的理论分析[J]. 制冷技术, 2014, 34(5): 31-33, 53. |
Tang J J, Wang X, Zhang H N, et al. Theoretical analysis of influence of circulating ratio on heat transfer in ammonia refrigeration system[J]. Chinese Journal of Refrigeration Technology, 2014, 34(5): 31-33, 53. | |
27 | 申江, 张于峰, 李林, 等. 氨制冷技术研究进展[J]. 化工学报, 2008, 59(S2): 29-36. |
Shen J, Zhang Y F, Li L, et al. Development of ammonia refrigerating technology[J]. CIESC Journal, 2008, 59(S2): 29-36. | |
28 | 李林, 王晓东. 氨制冷新技术及其进展[J]. 制冷, 2008, 27(4): 28-35. |
Li L, Wang X D. Development of ammonia refrigerating technology[J]. Refrigeration, 2008, 27(4): 28-35. | |
29 | Sun Z L, Wang Q F, Dai B M, et al. Options of low global warming potential refrigerant group for a three-stage cascade refrigeration system[J]. International Journal of Refrigeration, 2019, 100: 471-483. |
30 | Pearson A. Refrigeration with ammonia[J]. International Journal of Refrigeration, 2008, 31(4): 545-551. |
31 | 张泽凯, 邹同华. 氨制冷系统小型化存在问题与展望[J]. 冷藏技术, 2022, 45(1): 53-58. |
Zhang Z K, Zou T H. Problems and prospect of ammonia refrigeration system miniaturization[J]. Journal of Refrigeration Technology, 2022, 45(1): 53-58. | |
32 | Kai W, Eisele M, Hwang Y, et al. Review of secondary loop refrigeration systems[J]. International Journal of Refrigeration, 2010, 33(2): 212-234. |
33 | Wu J Z, Li Q T, Liu G H, et al. Evaluating the impact of refrigerated transport trucks in China on climate change from the life cycle perspective[J]. Environmental Impact Assessment Review, 2022, 97: 106866. |
34 | Li G. Comprehensive investigation of transport refrigeration life cycle climate performance[J]. Sustainable Energy Technologies and Assessments, 2017, 21: 33-49. |
35 | Wu X M, Hu S, Mo S J. Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems[J]. Journal of Cleaner Production, 2013, 54: 115-124. |
36 | Lawton R, 邵月月, 范薇, 等. 冷链技术简介(Ⅱ): 冷藏运输[J]. 制冷技术, 2021, 41(4): 94-96. |
Lawton R, Shao Y Y, Fan W, et al. Cold chain technology brief(Ⅱ): Transport refrigeration[J]. Chinese Journal of Refrigeration Technology, 2021, 41(4): 94-96. | |
37 | Barta R B, Groll E A, Ziviani D. Review of stationary and transport CO2 refrigeration and air conditioning technologies[J]. Applied Thermal Engineering, 2021, 185: 116422. |
38 | Maiorino A, Petruzziello F, Aprea C. Refrigerated transport: state of the art, technical issues, innovations and challenges for sustainability[J]. Energies, 2021, 14: 7237. |
39 | Shi L, Tian H, Shu G. Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery[J]. Applied Energy, 2020, 264: 114670. |
40 | Han X L, Li J B, Kong X Q, et al. Thermodynamic performance study on a novel absorption compression cascade refrigeration activated by an internal combustion engine[J]. International Journal of Energy Research, 2021, 45(6): 9595-9612. |
41 | Wajs J, Mrozek M, Fornalik-Wajs E, et al. Combined cold supply system for ship application based on low GWP refrigerants-thermo-economic and ecological analyses[J]. Energy Conversion and Management, 2022, 258: 115518. |
42 | Pigani L, Boscolo M, Pagan N. Marine refrigeration plants for passenger ships: low-GWP refrigerants and strategies to reduce environmental impact[J]. International Journal of Refrigeration, 2016, 64: 80-92. |
43 | Paride G, Armin H, Krzysztof B. Transcritical R744 refrigeration systems for supermarket applications: current status and future perspectives[J]. International Journal of Refrigeration, 2018, 93: 269-310. |
44 | Sun J, Im P, Bae Y, et al. Dataset of low global warming potential refrigerant refrigeration system for fault detection and diagnostics[J]. Scientific Data, 2021, 8(1): 144. |
45 | 滑雪, 王文华, 刘圣春, 等. 超市绿色制冷剂应用现状与实践[J]. 制冷与空调, 2019, 19(9): 59-64, 70. |
Hua X, Wang W H, Liu S C, et al. Application status and practice of green refrigerant in supermarket[J]. Refrigeration and Air-Conditioning, 2019, 19(9): 59-64, 70. | |
46 | Beshr M, Aute V, Sharma V, et al. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants[J]. International Journal of Refrigeration, 2015, 56: 154-164. |
47 | Sogut M Z, Yalcin E, Karakoc H. Refrigeration inventory based on CO2 emissions and exergetic performance for supermarket applications[J]. Energy and Buildings, 2012, 51: 84-92. |
48 | Hafner A, Foersterling S, Banasiak K. Multi-ejector concept for R-744 supermarket refrigeration[J]. International Journal of Refrigeration, 2014, 43: 1-13. |
49 | 陈威, 于梅红, 赵红霞. 优化控制R744多喷射器双温超市制冷系统[J]. 化工学报, 2020, 71(7): 3266-3277. |
Chen W, Yu M H, Zhao H X. Control optimization of R744 duo-temperature supermarket refrigeration system with multi-ejector[J]. CIESC Journal, 2020, 71(7): 3266-3277. | |
50 | 林励冠, 代彦军, Hafner A. 两级R744超市中央制冷系统节能特性[J]. 化工学报, 2018, 69(S2): 394-401. |
Lin L G, Dai Y J, Hafner A. Performance of R744 commercial centralized refrigeration systems[J]. CIESC Journal, 2018, 69(S2): 394-401. | |
51 | Sun Z L, Li J M, Liang Y C, et al. Performance assessment of CO2 supermarket refrigeration system in different climate zones of China[J]. Energy Conversion and Management, 2020, 208: 112572. |
52 | Cui Q, Gao E Y, Zhang Z Y, et al. Preliminary study on the feasibility assessment of CO2 booster refrigeration systems for supermarket application in China: an energetic, economic, and environmental analysis[J]. Energy Conversion and Management, 2021, 225: 113422. |
53 | 代宝民, 刘圣春, 曹钰, 等. 商超自然工质CO2制冷系统增效技术及碳减排预测[J]. 华电技术, 2021, 43(11): 74-84. |
Dai B M, Liu S C, Cao Y, et al. Efficiency enhancement technology and carbon emission prediction of refrigeration system taking CO2 natural refrigerant in supermarkets [J]. Huadian Technology, 2021, 43(11): 74-84. | |
54 | Li Z H, Jiang H Y, Chen X W, et al. Optimal refrigerant charge and energy efficiency of an oil-free refrigeration system using R134a[J]. Applied Thermal Engineering, 2020, 164: 114473. |
55 | Lin L N, Kedzierski M A. Review of low-GWP refrigerant pool boiling heat transfer on enhanced surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1279-1303. |
56 | Makhnatch P, Mota-Babiloni A, Rogstam J, et al. Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system[J]. International Journal of Refrigeration, 2017, 76: 184-192. |
57 | Llopis R, Calleja-Anta D, Sanchez D, et al. R-454C, R-459B, R-457A and R-455A as low-GWP replacements of R-404A: experimental evaluation and optimization[J]. International Journal of Refrigeration, 2019, 106: 133-143. |
58 | Llopis, R, Calleja-Anta D, Maiorino A, et al. TEWI analysis of a stand-alone refrigeration system using low-GWP fluids with leakage ratio consideration[J]. International Journal of Refrigeration, 2020, 118: 279-289. |
59 | Poggi F, Macchi-Tejeda H, Leducq D, et al. Refrigerant charge in refrigerating systems and strategies of charge reduction[J]. International Journal of Refrigeration, 2008, 31(3): 353-370. |
60 | 元爱民. R22制冷系统改造成R22/CO2载冷系统的可行性分析[J]. 制冷与空调, 2020, 20(4): 59-63. |
Yuan A M. Feasibility analysis of R22 refrigeration system reconstructed to R22/CO2 secondary refrigeration system[J]. Refrigeration and Air-Conditioning, 2020, 20(4): 59-63. | |
61 | Zhang S Z, Chen G M, Li Z T, et al. Computational fluid dynamics analysis of flammable refrigerant leakage through a microcrack[J]. International Journal of Refrigeration, 2022, 134: 35-44. |
62 | Fang X, Lin J, Ma X M. Simulation study on compression characteristics of low GWP refrigerants in the cylinder of rotary compressors[J]. Applied Thermal Engineering, 2021, 193: 117056. |
63 | Hart M, Austin W, Acha S, et al. A roadmap investment strategy to reduce carbon intensive refrigerants in the food retail industry[J]. Journal of Cleaner Production, 2020, 275: 123039. |
64 | 司春强, 唐俊杰, 马进, 等. 我国氨系统冷库安全现状及发展建议[J]. 制冷技术, 2014, 34(3): 15-17. |
Si C Q, Tang J J, Ma J, et al. Security situation and development recommendations of cold storage with ammonia system in China[J]. Chinese Journal of Refrigeration Technology, 2014, 34(3): 15-17. | |
65 | Li K, Wang J W, Luo S X, et al. Experimental investigation on combustion characteristics of flammable refrigerant R290/R1234yf leakage from heat pump system for electric vehicles[J]. 2020, 7(4): 191478. |
66 | Tang W E, He G G, Sun W, et al. Assessment of leakage and risk reduction of R290 in a split type household air conditioner[J]. International Journal of Refrigeration, 2018, 89: 70-82. |
67 | 刘英志, 刘业凤, 卞伟, 等. R290制冷剂在商用冷柜上的应用研究[J]. 制冷技术, 2012, 32(1): 58-60. |
Liu Y Z, Liu Y F, Bian W, et al. Refrigerant performance study on R290 used in commercial refrigerators[J]. Chinese Journal of Refrigeration Technology, 2012, 32(1): 58-60. | |
68 | Wang H Y, Wang Y, Mi H, et al. Analysis of carbon emission energy inventory from refrigerant production and recycling carbon compensation[J]. Applied Sciences-Basel, 2022, 12: 1. |
69 | Uwitonze H, Chaniago Y D, Lim H. Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant[J]. Energy, 2022, 254: 124373. |
70 | 吴泽球. 制冷剂回收及研究的现状和建议[J]. 环境与可持续发展, 2008(5): 37-39. |
Wu Z Q. Present situation and suggestions of refrigerant recovery and research[J]. Environment and Sustainable Development, 2008(5): 37-39. | |
71 | 张贺然, 于可利, 邱金凤, 等. 美国、欧盟、日本的制冷剂回收处置现状[J]. 资源再生, 2018, 11: 48-51. |
Zhang H R, Yu K L, Qiu J F, et al. Current status of refrigerant recovery and disposal in the United States, the European Union, and Japan[J]. Resource Recycling, 2018, 11: 48-51. | |
72 | 骆理学. 制冷剂回收与循环利用技术[J]. 制冷与空调, 2014, 14(6): 48-50, 68. |
Luo X L. Refrigerant's recovery and recycling technology[J]. Refrigeration and Air-Conditioning, 2014, 14(6): 48-50, 68. |
[1] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Xi WU, Zudi OU, Xinjie ZHANG, Shiming XU, Xiaojing ZHU. Experimental study on the flammability of HFO-1243zf [J]. CIESC Journal, 2023, 74(S1): 346-352. |
[4] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[5] | Yukun SUN, Tao YANG, Jiangtao WU. Measurement of vapor-liquid equilibrium for R32+R1234yf+R1234ze(E) [J]. CIESC Journal, 2022, 73(3): 1063-1071. |
[6] | Hanwen XUE, Feng NIE, Yanxing ZHAO, Xueqiang DONG, Hao GUO, Jun SHEN, Maoqiong GONG. Experimental study of flow boiling pressure drop of R290 in a horizontal tube based on flow pattern [J]. CIESC Journal, 2022, 73(11): 4903-4916. |
[7] | LUO Jielin, YANG Kaiyin, ZHAO Zhen, WANG Qin, CHEN Guangming. Heating performance of recuperative heat pump using low-GWP mixed refrigerant [J]. CIESC Journal, 2021, 72(S1): 84-90. |
[8] | WU Di, HU Bin, WANG Ruzhu, YU Jingjing, LIN Xinyi, LI Ziliang. Theoretical study and performance comparison of different heat pump cycles using water as working fluid [J]. CIESC Journal, 2021, 72(S1): 236-243. |
[9] | DAI Xiaoye, AN Qingsong, XU Yunting, SHI Lin. Review of waste refrigerant destruction methods [J]. CIESC Journal, 2021, 72(S1): 1-6. |
[10] | XU Chenyi, YE Gongran, GUO Haowen, ZHUANG Yuan, GUO Zhikai, HAN Xiaohong, CHEN Guangming. Experimental and theoretical study on liquid viscosity of R1336mzz(E) [J]. CIESC Journal, 2021, 72(6): 3261-3269. |
[11] | Yubo CHEN, Zhao YANG, Xiaokun WU, Zijian LYU, Yong ZHANG. Study on the saturated liquid viscosity characteristics of R513A [J]. CIESC Journal, 2021, 72(11): 5502-5509. |
[12] | Hongbo ZHAN, Wenyuan ZHENG, Tao WEN, Dalin ZHANG. Experimental investigation on condensation heat transfer of refrigerant R134a in micro-scale channel [J]. CIESC Journal, 2020, 71(S1): 83-89. |
[13] | Linzhen QIU, Bo GU, Menghua MIAO. Calculation model and analysis of thermodynamic properties of R32 refrigerant [J]. CIESC Journal, 2019, 70(6): 2075-2082. |
[14] | WU Di, HU Bin, WANG Ruzhu, JIANG Nanshan, LI Ziliang, YU Jingjing. Preliminary study on high temperature heat pump system with water refrigerant [J]. CIESC Journal, 2018, 69(S2): 95-100. |
[15] | PAN Yaochi, LIU Jinping, XU Xiongwen, FU Zhiming. Component concentration optimization analysis of cooling process and control strategy in auto-cascade refrigeration system [J]. CIESC Journal, 2017, 68(8): 3152-3160. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 306
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 332
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||