[1] |
王树民, 张翼, 刘吉臻. 燃煤电厂细颗粒物控制技术集成应用及"近零排放"特性[J]. 环境科学研究, 2016, 29(9):1256-1263. WANG S M, ZHANG Y, LIU J Z. Integrated application of fine particulate matter control technologies and their "Near-Zero Emission" characteristics in coal-fired power plants[J]. Research of Environmental Science, 2016, 29(9):1256-1263.
|
[2] |
王毓秀, 彭林, 王燕, 等. 电厂燃煤烟尘PM2.5中化学组分特征[J]. 环境科学, 2016, 37(1):60-65. WANG Y X, PENG L, WANG Y, et al. Characteristics of chemical components in PM2.5 from the coal dust of power plants[J]. Environmental Science, 2016, 37(1):60-65.
|
[3] |
刘含笑, 姚宇平, 郦建国, 等. 燃煤电厂烟气中SO3生成、治理及测试技术研究[J]. 中国电力, 2015, 48(9):152-156. LIU H X, YAO Y P, LI J G, et al. Study on SO3 generation, control and testing technology for coal-fired power plants[J]. Electric Power, 2015, 48(9):152-156.
|
[4] |
WEI Y, YU D, TONG S, et al. Effects of H2SO4 and O2 on Hg0 uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions[J]. Environmental Science & Technology, 2015, 49(3):1706-1712.
|
[5] |
CHEN J H, LU X F.Progress of petroleum coke combusting in circulating fluidized bed boilers a review and future perspectives[J]. Resources, Conservation and Recycling, 2007, 49(3):203-216.
|
[6] |
马瑞进. SO2催化氧化生成SO3反应机理的量子化学研究[D]. 南宁:广西大学, 2008. MA R J. Quantum chemistry study on the reaction mechanism of SO2 and O2 in the catalyze reaction[D]. Nanning:Guangxi University, 2008.
|
[7] |
赵东阳, 靳雅娜, 张世秋. 燃煤电厂污染减排成本有效性分析及超低排放政策讨论[J]. 中国环境科学, 2016, 36(9):2841-2848. ZHAO D Y, JIN Y N, ZHANG S Q. Cost-effectiveness analysis of pollution emission reductionmeasures and ultra-low emission policies for coal-fired power plants[J]. China Environmental Science, 2016, 36(9):2841-2848.
|
[8] |
宦宣州, 何育东, 王少亮, 等. 湿法脱硫吸收塔协同除尘试验[J]. 热力发电, 2017, (7):97-102. HUAN X Z, HE Y D, WANG S L, et al. Experiments about synergistic dust removal by WFGD system[J].Thermal Power Generation, 2017, (7):97-102.
|
[9] |
张磊. 中国燃煤大气汞排放特征与协同控制策略研究[D]. 北京:清华大学, 2012. ZHANG L. Study on atmospheric mercury emission and synergetic control strategies from coal combustion in China[D]. Beijing:Tsinghua University, 2012.
|
[10] |
吴优福. 循环流化床锅炉SO2超低排放技术研究[J]. 洁净煤技术, 2017, 23(2):108-113. WU Y F. Study on SO2 ultra low emission technology on circulating fluidized bed boiler[J]. Clean Coal Technology, 2017, 23(2):108-113.
|
[11] |
沈文锋, 向柏祥, 张海, 等. 煤粉炉SNCR对SO3生成影响的数值模拟[J]. 化工学报, 2017, 68(8):3225-3231. SHEN W F, XIANG B X, ZHANG H, et al. Numerical simulation on formation of SO3 during SNCR process in pulverized coal-fired boiler[J]. CIESC Journal, 2017, 68(8):3225-3231.
|
[12] |
陈鹏芳, 朱庚富, 张俊翔. 基于实测的燃煤电厂烟气协同控制技术对SO3去除效果的研究[J]. 环境污染与防治, 2017, 39(3):232-235. CHEN P F, ZHU G F, ZHANG J X. Research on SO3 removal efficiency by flue gas co-benefit control technique of coal-fired power plants based on field tests[J]. Environmental Pollution &Control, 2017, 39(3):232-235.
|
[13] |
张军, 郑成航, 张涌新, 等. 某1000MW燃煤机组超低排放电厂烟气污染物排放测试及其特性分析[J]. 中国电机工程学报, 2016, 36(5):1310-1314. ZHANG J, ZHENG C H, ZHANG Y X, et al. Experimental investigation of ultra-low pollutants emission characteristics from a 1000MW coal-fired power plant[J]. Proceedings of the CSEE, 2016, 36(5):1310-1314.
|
[14] |
向柏祥, 杨海瑞, 吕俊复. 燃煤锅炉烟气中SO3生成的化学动力学模型和实验研究[J]. 化工学报, 2017, 68(7):2896-2909. XIANG B X, YANG H R, LÜ J F. Kinetic modelling and experimental studies on SO3 generation in flue gas for a coal-fired boiler[J]. CIESC Journal, 2017, 68(7):2896-2909.
|
[15] |
邓双, 张凡, 刘宇, 等. 燃煤电厂铅的迁移转化研究[J]. 中国环境科学, 2013, 33(7):1199-1206. DENG S, ZHANG F, LIU Y, et al. Lead emission and speciation of coal-fired power plants in China[J]. China Environmental Science, 2013, 33(7):1199-1206.
|
[16] |
王文选. 循环流化床中石油焦与煤混烧特性研究[D]. 南京:东南大学, 2002. WANG W X. Study on combustion characteristics of the co-firing of petroleum coke and coal[D]. Nanjing:Southeast University, 2002.
|
[17] |
SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioxide from coal-fired power plants[J]. Journal of the Air & Waste Management Association, 2004, 54(6):750.
|
[18] |
吕晨, 刘小伟, 郭俊哲, 等. O2/H2O燃烧方式下石灰石的间接硫化反应特性[J]. 化工学报, 2017, 68(1):353-359. LÜ W, LIU X W, GUO J Z, et al. Indirect sulfation characteristics of limestone under O2/H2O combustion atmosphere[J]. CIESC Journal, 2017, 68(1):353-359.
|
[19] |
WANG X, LIU X, LI D, et al. Effect of steam and sulfur dioxide on sulfur trioxide formation during oxy-fuel combustion[J]. International Journal of Greenhouse Gas Control, 2015, 43:1-9.
|
[20] |
WANG J, WU Y, ANTHONY B. Reactivation of FBC ash as sulphur sorbent:hydration and sulphation studies[C]//International Conference on Fluidized Bed Combustion. 2005:385-390.
|
[21] |
王曙光. 300 MW CFB锅炉高效脱硫技术的应用研究[D]. 太原:中北大学, 2015. WANG S G. Study on application of high efficiency desulfurization technology of 300MW CFB boiler[D]. Taiyuan:North University of China, 2015.
|
[22] |
CHENG C M, HACK P, CHU P, et al. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems[J]. Energy & Fuels, 2009, 23(10):4805-4816.
|
[23] |
史文峥, 杨萌萌, 张绪辉, 等. 燃煤电厂超低排放技术路线与协同脱除[J]. 中国电机工程学报, 2016, 36(16):4308-4318. SHI W Z, YANG M M, ZHANG X H, et al. Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J]. Proceedings of the CSEE, 2016, 36(16):4308-4318.
|
[24] |
滕农, 张运宇, 魏晗, 等. 石灰石/石膏湿法FGD装置除尘效率和SO3脱除率探讨[J]. 电力科技与环保, 2008, 24(4):27-28. TENG N, ZHANG Y Y, WEI H, et al. Discussion on ash removal efficiency and sulfur trioxide removal efficiency of WFGD system[J]. Electric Power Environmental Protection, 2008, 24(4):27-28.
|
[25] |
潘丹萍, 吴昊, 黄荣廷, 等. 石灰石-石膏法烟气脱硫过程中SO3酸雾脱除特性[J]. 东南大学学报(自然科学版), 2016, 46(2):311-316. PAN D P, WU H, HUANG R T, et al. Removal properties of sulfuric acid mist during limestone-gypsum flue gas desulfurization process[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(2):311-316.
|
[26] |
王珲, 宋蔷, 姚强, 等. 电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J]. 中国电机工程学报, 2008, 28(5):1-7. WANG H, SONG Q, YAO Q, et al. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proceedings of the CSEE, 2008, 28(5):1-7.
|
[27] |
李昊, 陈午凤, 王长安, 等. 急冷处理对CFB锅炉底渣脱硫特性的影响[J]. 化工学报, 2016, 67(9):3583-3589. LI H, CHEN W F, WANG C A, et al. Effect of rapid water-cooling process on desulfurization performance of CFB bottom ash[J]. CIESC Journal, 2016, 67(9):3583-3589.
|
[28] |
马志斌, 常可可, 燕可洲, 等. 不同负荷下循环流化床锅炉粉煤灰的理化性质研究[J]. 洁净煤技术, 2016, 22(4):20-25. MA Z B, CHANG K K, YAN K Z, et al. Characteristics of fly ash and slag in circulating fluidized bed under different conditions[J]. Clean Coal Technology, 2016, 22(4):20-25.
|
[29] |
杨娟. 固硫灰渣特性及其作水泥掺合料研究[D]. 重庆:重庆大学, 2006. YANG J. Study on properties and utilization in additive of cement of ashes from fluidized bed combustion[D]. Chongqing:Chongqing University, 2006.
|
[30] |
杨蔚, 董发勤, 何平. 燃煤固硫灰渣的特性及其资源化利用现状[J]. 粉煤灰综合利用, 2013, (4):50-52. YANG W, DONG F Q, HE P. The characteristics and resource utilization status of coal-fired desulphurization ash residue[J]. Fly Ash Comprehensive Utilization, 2013, (4):50-52.
|
[31] |
李树林. 循环流化床锅炉深度脱硫技术经济性研究[D]. 上海:上海交通大学, 2012. LI S L. Technology and economic research on CFB boiler deep desulfurization[D]. Shanghai:Shanghai Jiao Tong University, 2012.
|