CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4122-4132.DOI: 10.11949/0438-1157.20220405
• Energy and environmental engineering • Previous Articles Next Articles
Tongpeng LU1,2,3(), Xiaolin PAN1,2,3(), Hongfei WU1,2,3, Yu LI1,2,3, Haiyan YU1,2,3()
Received:
2022-03-22
Revised:
2022-06-28
Online:
2022-10-09
Published:
2022-09-05
Contact:
Xiaolin PAN, Haiyan YU
鲁统鹏1,2,3(), 潘晓林1,2,3(), 吴鸿飞1,2,3, 李煜1,2,3, 于海燕1,2,3()
通讯作者:
潘晓林,于海燕
作者简介:
鲁统鹏(1995—),男,硕士研究生,danubeblue@foxmail.com
基金资助:
CLC Number:
Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism[J]. CIESC Journal, 2022, 73(9): 4122-4132.
鲁统鹏, 潘晓林, 吴鸿飞, 李煜, 于海燕. 有机絮凝剂对铁矿相沉降性能影响及其吸附机理[J]. 化工学报, 2022, 73(9): 4122-4132.
Add to citation manager EndNote|Ris|BibTeX
Flocculant type | Functional group |
---|---|
ammonium polyacrylate (PAAA) | —COO- |
anionic polyacrylamide (APAM) | —CONH2,—COO- |
mixed hydroxamic acid (HPAM) | —CONHOH,—CONH2,—COO- |
high content hydroxamic acid (HCPAM) | —CONHOH |
Table 1 Types of different flocculants and functional groups
Flocculant type | Functional group |
---|---|
ammonium polyacrylate (PAAA) | —COO- |
anionic polyacrylamide (APAM) | —CONH2,—COO- |
mixed hydroxamic acid (HPAM) | —CONHOH,—CONH2,—COO- |
high content hydroxamic acid (HCPAM) | —CONHOH |
Iron-bearing mineral | Flocculant | v1/(m·h-1) | v5/(m·h-1) | Compression ratio/% | Supernatant turbidity/NTU |
---|---|---|---|---|---|
hematite | no flocculant | 0.621 | 0.738 | 24.88 | 70.71 |
PAAA | 0.771 | 0.842 | 25.71 | 136.59 | |
APAM | 0.481 | 0.718 | 26.83 | 114.53 | |
HPAM | 4.434 | 1.716 | 21.46 | 327.76 | |
HCPAM | 7.397 | 1.759 | 19.51 | 292.47 | |
goethite | no flocculant | 0.046 | 0.029 | 89.50 | 221.00 |
PAAA | 0.068 | 0.041 | 88.00 | 160.71 | |
APAM | 0.025 | 0.026 | 92.00 | 88.94 | |
HPAM | 0.246 | 0.211 | 62.50 | 32.47 | |
HCPAM | 0.305 | 0.508 | 53.00 | 30.41 |
Table 2 Settling performance of different flocculants with hematite and goethite
Iron-bearing mineral | Flocculant | v1/(m·h-1) | v5/(m·h-1) | Compression ratio/% | Supernatant turbidity/NTU |
---|---|---|---|---|---|
hematite | no flocculant | 0.621 | 0.738 | 24.88 | 70.71 |
PAAA | 0.771 | 0.842 | 25.71 | 136.59 | |
APAM | 0.481 | 0.718 | 26.83 | 114.53 | |
HPAM | 4.434 | 1.716 | 21.46 | 327.76 | |
HCPAM | 7.397 | 1.759 | 19.51 | 292.47 | |
goethite | no flocculant | 0.046 | 0.029 | 89.50 | 221.00 |
PAAA | 0.068 | 0.041 | 88.00 | 160.71 | |
APAM | 0.025 | 0.026 | 92.00 | 88.94 | |
HPAM | 0.246 | 0.211 | 62.50 | 32.47 | |
HCPAM | 0.305 | 0.508 | 53.00 | 30.41 |
Iron-bearing mineral | Flocculant | D(0.1)/μm | D(0.5)/μm | D(0.9)/μm | Specific surface area/(m2‧kg-1) |
---|---|---|---|---|---|
hematite | no flocculant | 0.06 | 3.91 | 11.80 | 32390 |
PAAA | 14.33 | 63.07 | 186.33 | 182.13 | |
APAM | 11.40 | 42.38 | 186.00 | 223.73 | |
HPAM | 13.00 | 36.63 | 80.87 | 236.47 | |
HCPAM | 15.40 | 59.40 | 135.33 | 181.17 | |
goethite | no flocculant | 0.11 | 6.25 | 29.73 | 12230 |
PAAA | 13.10 | 43.60 | 125.00 | 83.27 | |
APAM | 14.60 | 46.10 | 99.50 | 80.23 | |
HPAM | 10.80 | 26.40 | 71.50 | 132.90 | |
HCPAM | 12.40 | 33.50 | 106.00 | 87.70 |
Table 3 Particle size of hematite and goethite flocs formed with different flocculants
Iron-bearing mineral | Flocculant | D(0.1)/μm | D(0.5)/μm | D(0.9)/μm | Specific surface area/(m2‧kg-1) |
---|---|---|---|---|---|
hematite | no flocculant | 0.06 | 3.91 | 11.80 | 32390 |
PAAA | 14.33 | 63.07 | 186.33 | 182.13 | |
APAM | 11.40 | 42.38 | 186.00 | 223.73 | |
HPAM | 13.00 | 36.63 | 80.87 | 236.47 | |
HCPAM | 15.40 | 59.40 | 135.33 | 181.17 | |
goethite | no flocculant | 0.11 | 6.25 | 29.73 | 12230 |
PAAA | 13.10 | 43.60 | 125.00 | 83.27 | |
APAM | 14.60 | 46.10 | 99.50 | 80.23 | |
HPAM | 10.80 | 26.40 | 71.50 | 132.90 | |
HCPAM | 12.40 | 33.50 | 106.00 | 87.70 |
Iron-bearing mineral | Flocculant | Df | |||
---|---|---|---|---|---|
1 | 2 | 3 | Average | ||
hematite | PAAA | 2.493 | 2.488 | 2.492 | 2.491 |
APAM | 2.436 | 2.443 | 2.447 | 2.442 | |
HPAM | 2.537 | 2.541 | 2.547 | 2.542 | |
HCPAM | 2.373 | 2.377 | 2.381 | 2.377 | |
goethite | PAAA | 2.224 | 2.238 | 2.248 | 2.237 |
APAM | 2.157 | 2.156 | 2.155 | 2.156 | |
HPAM | 2.324 | 2.331 | 2.338 | 2.331 | |
HCPAM | 2.433 | 2.434 | 2.433 | 2.433 |
Table 4 Fractal dimension of hematite and goethite
Iron-bearing mineral | Flocculant | Df | |||
---|---|---|---|---|---|
1 | 2 | 3 | Average | ||
hematite | PAAA | 2.493 | 2.488 | 2.492 | 2.491 |
APAM | 2.436 | 2.443 | 2.447 | 2.442 | |
HPAM | 2.537 | 2.541 | 2.547 | 2.542 | |
HCPAM | 2.373 | 2.377 | 2.381 | 2.377 | |
goethite | PAAA | 2.224 | 2.238 | 2.248 | 2.237 |
APAM | 2.157 | 2.156 | 2.155 | 2.156 | |
HPAM | 2.324 | 2.331 | 2.338 | 2.331 | |
HCPAM | 2.433 | 2.434 | 2.433 | 2.433 |
1 | 毕诗文, 于海燕, 杨毅宏. 拜耳法生产氧化铝[M]. 北京: 冶金工业出版社, 2007. |
Bi S W, Yu H Y, Yang Y H. Production Technology of Alumina[M]. Beijing: Metallurgical Industry Press, 2007. | |
2 | 费祥俊. 浆体与粒状物料输送水力学[M]. 北京: 清华大学出版社, 1994. |
Fei X J. Hydraulics of Transporting Slurry and Granular Material[M]. Beijing: Tsinghua University Press, 1994. | |
3 | 潘晓林, 于海燕, 涂赣峰, 等. 石灰对三水铝石型铝土矿低温溶出行为的影响[J]. 东北大学学报(自然科学版), 2013, 34(4): 551-555. |
Pan X L, Yu H Y, Tu G F, et al. Effect of lime on digestion of gibbsitic bauxites at low temperature[J]. Journal of Northeastern University (Natural Science), 2013, 34(4): 551-555. | |
4 | James D F, Blakey B. Comparison of the rheologies of laterite and goethite suspensions[J]. Korea-Australia Rheology Journal, 2004, 16: 109-115. |
5 | Shrimali K, Jin J Q, Hassas B V, et al. The surface state of hematite and its wetting characteristics[J]. Journal of Colloid and Interface Science, 2016, 477: 16-24. |
6 | Li L Y. A study of iron mineral transformation to reduce red mud tailings[J]. Waste Management, 2001, 21(6): 525-534. |
7 | Zhou G T, Wang Y L, Qi T G, et al. Low-temperature thermal conversion of Al-substituted goethite in gibbsitic bauxite for maximum alumina extraction[J]. RSC Advances, 2022, 12(7): 4162-4174. |
8 | 孙茜, 黄红岗. 拜耳法赤泥分离沉降槽跑浑的原因及解决方法[J]. 中国有色冶金, 2004, 33(2): 9-10, 21. |
Sun Q, Huang H G. Method for sovling the problem about too much solid in the solution in red mud separation thickener of Bayer process[J]. China Nonferrous Metallurgy, 2004, 33(2): 9-10, 21. | |
9 | 方乘, 杨盛, 吴云, 等. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723. |
Fang C, Yang S, Wu Y, et al. Effect of floc surface morphology on membrane pollution prediction[J]. CIESC Journal, 2020, 71(2): 715-723. | |
10 | 李警阳, 张忠国, 孙春宝, 等. 基于分形学的絮凝理论研究进展[J]. 化工进展, 2012, 31(12): 2609-2614, 2625. |
Li J Y, Zhang Z G, Sun C B, et al. A review of flocculation theories incorporating fractal geometry[J]. Chemical Industry and Engineering Progress, 2012, 31(12): 2609-2614, 2625. | |
11 | Kirwan L J, Fawell P D, Bronswijk W. An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(10): 4093-4100. |
12 | Cheng K, Wu X Q, Tang H H, et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate[J]. Minerals Engineering, 2022, 176: 107273. |
13 | Huang C B, Wang Y H. Removal of aluminosilicates from diasporic-bauxite by selective flocculation using sodium polyacrylate[J]. Separation and Purification Technology, 2008, 59(3): 299-303. |
14 | 冯永宁, 金鹏康, 王晓昌. 典型pH条件下水中离子对腐殖酸絮凝体构造的影响[J]. 环境化学, 2013, 32(6): 1088-1093. |
Feng Y N, Jin P K, Wang X C. Effects of ion in water on humic acid floc structure under typical pH conditions[J]. Environmental Chemistry, 2013, 32(6): 1088-1093. | |
15 | 苏宇峰, 王兴军, 于广锁, 等. 高岭土颗粒在聚丙烯酰胺作用下的动态絮凝过程[J]. 华东理工大学学报(自然科学版), 2016, 42(4): 439-445. |
Su Y F, Wang X J, Yu G S, et al. Dynamic flocculation process of Kaolin particles under the effect of polyacrylamide[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(4): 439-445. | |
16 | Zhang S X, Zheng H L, Tang X M, et al. Evaluation a self-assembled anionic polyacrylamide flocculant for the treatment of hematite wastewater: role of microblock structure[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 11-20. |
17 | Ferretti R, Zhang J W, Buffle J. Flocculation of hematite with polyacrylic acid: fractal structures in the reaction- and diffusion-limited aggregation regimes[J]. Journal of Colloid and Interface Science, 1998, 208(2): 509-517. |
18 | Atkinson R J, Posner A M, Quirk J P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface[J]. The Journal of Physical Chemistry, 1967, 71(3): 550-558. |
19 | 杜倩倩, 谷景华, 默广, 等. TiO2-ZrO2聚合溶胶形成过程的小角X射线散射研究[J]. 化工学报, 2018, 69(4): 1731-1740. |
Du Q Q, Gu J H, Mo G, et al. Study on formation of polymeric TiO2-ZrO2 sols by small angle X-ray scattering[J]. CIESC Journal, 2018, 69(4): 1731-1740. | |
20 | Gmachowski L. Calculation of the fractal dimension of aggregates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211(2/3): 197-203. |
21 | Logan B E, Kilps J R. Fractal dimensions of aggregates formed in different fluid mechanical environments[J]. Water Research, 1995, 29(2): 443-453. |
22 | 梁高杰, 陈文汨, 范尚. 赤泥沉降用新型氧肟酸絮凝剂的合成与应用[J]. 中南大学学报(自然科学版), 2017, 48(2): 295-301. |
Liang G J, Chen W M, Fan S. Preparation of new hydroxamic acid flocculant and application for red mud settlement[J]. Journal of Central South University (Science and Technology), 2017, 48(2): 295-301. | |
23 | 张钦礼, 王石, 王新民. 絮凝剂单耗对全尾砂浆浑液面沉速的影响规律[J]. 中国有色金属学报, 2017, 27(2): 318-324. |
Zhang Q L, Wang S, Wang X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(2): 318-324. | |
24 | 梁高杰, 王丹丹, 谢巧玲, 等. 氧肟酸型聚合物制备及其在铜氨废水处理中的应用研究[J]. 应用化工, 2021, 50(12): 3304-3308. |
Liang G J, Wang D D, Xie Q L, et al. Synthesis of hydroxamic polymer and application on the copper ammonia wastewater treatment[J]. Applied Chemical Industry, 2021, 50(12): 3304-3308. | |
25 | Liang G J, Nguyen A V, Chen W M, et al. Interaction forces between goethite and polymeric flocculants and their effect on the flocculation of fine goethite particles[J]. Chemical Engineering Journal, 2018, 334: 1034-1045. |
26 | Ponou J, Ide T, Suzuki A, et al. Evaluation of the flocculation and de-flocculation performance and mechanism of polymer flocculants[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2014, 69(6): 1249-1258. |
27 | Dash M, Dwari R K, Biswal S K, et al. Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings[J]. Chemical Engineering Journal, 2011, 173(2): 318-325. |
28 | Zhang H L, Xu Z J, Chen D X, et al. Adsorption mechanism of water molecules on hematite (1 0 4) surface and the hydration microstructure[J]. Applied Surface Science, 2021, 550: 149328. |
29 | 赵文林, 何洁冰. 羧酸金属盐β晶型成核剂合成及应用研究[J]. 化工学报, 2019, 70(S1): 211-216, 260. |
Zhao W L, He J B. Synthesis and application of carboxylic acid metal salt beta crystal nucleating agent[J]. CIESC Journal, 2019, 70(S1): 211-216, 260. | |
30 | Baigorri R, García-Mina J M, González-Gaitano G. Supramolecular association induced by Fe(Ⅲ) in low molecular weight sodium polyacrylate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292(2/3): 212-216. |
31 | Lee D H, Condrate R A, Reed J S. Infrared spectral investigation of polyacrylate adsorption on alumina[J]. Journal of Materials Science, 1996, 31(2): 471-478. |
32 | Liu J W, Hu H P, Wang M, et al. Adsorption mechanism of the simulated red mud from diaspore with high levels of silicon and iron[J]. The Canadian Journal of Chemical Engineering, 2016, 94(9): 1700-1709. |
33 | Güngör N, Karaoğlan S. Interactions of polyacrylamide polymer with bentonite in aqueous systems[J]. Materials Letters, 2001, 48(3/4): 168-175. |
34 | AlKhatib H S, Taha M O, Aiedeh K M, et al. Synthesis and in vitro behavior of iron-crosslinked N-methyl and N-benzyl hydroxamated derivatives of alginic acid as controlled release carriers[J]. European Polymer Journal, 2006, 42(10): 2464-2474. |
35 | Adiguzel E, Yilmaz F, Emirik M, et al. Synthesis and characterization of two new hydroxamic acids derivatives and their metal complexes. An investigation on the keto/enol, E/Z and hydroxamate/hydroximate forms[J]. Journal of Molecular Structure, 2017, 1127: 403-412. |
36 | Jones F, Farrow J B, van Bronswijk W. An infrared study of a polyacrylate flocculant adsorbed on hematite[J]. Langmuir, 1998, 14(22): 6512-6517. |
37 | 翟丽军. 基于芳香五羧酸配位聚合物的合成、结构及性能研究[D]. 太原: 中北大学, 2020. |
Zhai L J. Syntheses, structures and properties of coordination polymers based on aromatic pentacarboxylic acids[D]. Taiyuan: North University of China, 2020. | |
38 | Wang M, Hu H P, Chen X P, et al. Flocculation mechanism of synthetic goethite suspension using hydroxamated polymer and sodium polyacrylate[J]. The Chinese Journal of Process Engineering, 2016(3): 452-462. |
39 | Ahmed A A, Gypser S, Leinweber P, et al. Infrared spectroscopic characterization of phosphate binding at the goethite-water interface[J]. Physical Chemistry Chemical Physics, 2019, 21(8): 4421-4434. |
40 | Villalobos M, Cheney M A, Alcaraz-Cienfuegos J. Goethite surface reactivity(Ⅱ): A microscopic site-density model that describes its surface area-normalized variability[J]. Journal of Colloid and Interface Science, 2009, 336(2): 412-422. |
41 | Kubicki J D, Paul K W, Kabalan L, et al. ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(41): 14573-14587. |
[1] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[2] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[3] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[7] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[8] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[9] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[10] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[11] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[12] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[13] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[14] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[15] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||