[1] |
SCHWAB F, LUCAS M, CLAUS P. Ruthenium catalyzed selective hydrogenation of benzene to cyclohexene in the presence of an ionic liquid[J]. Angew. Chem., Int. Ed., 2011, 50(44):10453-10456.
|
[2] |
TOMAS R A F, BORDADO J C M, GOMES J F P. p-Xyleneoxidation to terephthalic acid:a literature review oriented toward process optimization and development[J]. Chem. Rev., 2013, 113(10):7421-7469.
|
[3] |
李立权. 柴油加氢技术的工程化发展方向[J]. 炼油技术与工程, 2015, 6:1-6. LI L Q. Development orientation of engineering technologies for diesel hydrogenation[J]. Petroleum Refinery Technology and Engineering, 2015, 6:1-6.
|
[4] |
LEVENSPIEL O. Chemical Reaction Engineering[M]. 3rd ed. New York:John Wiley & Sons Inc., 1999:502.
|
[5] |
GARCÍA-ABUÍN A, GÓMEZ-DÍAZ D, LOSADA M, et al. Bubble column gas-liquid interfacial area in a polymer + surfactant + water system[J]. Chem. Eng. Sci., 2012, 75:334-341.
|
[6] |
MILLER D N. Interfacial area, bubble coalescence and mass transfer in bubble column reactors[J]. AIChE J., 1983, 29(2):312-319.
|
[7] |
PATEL S A, DALY J G, BUKUR D B. Holdup and interfacial area measurements using dynamic gas disengagement[J]. AIChE J., 1989, 35(6):931-942.
|
[8] |
DECKWER W D, SCHUMPE A. Improved tools for bubble column reactor design and scale-up[J]. Chem. Eng. Sci., 1993, 48(5):889-911.
|
[9] |
SHAH Y T, KELKAR B G, GODBOLE S P, et al. Design parameters estimations for bubble column reactors[J]. AIChE J., 1982, 28(3):353-379.
|
[10] |
ZHAO B, MOORE J S, BEEBE D J. Surface-directed liquid flow inside microchannel[J]. Science, 2001, 291(5506):1023-1026.
|
[11] |
KOBAYASHI J, MORI Y, OKAMOTO K, et al. A micro-fluidic device for conducting gas-liquid-solid hydrogenation reactions[J]. Science, 2004, 304(5675):1305-1308.
|
[12] |
DEMELLO A J. Control and detection of chemical reactions in microfluidic systems[J]. Nature, 2006, 442(7101):394-402.
|
[13] |
WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368-373.
|
[14] |
PARK C P, KIM D P. Dual-channel microreactor for gas-liquid syntheses[J]. J. Am. Chem. Soc., 2010, 132(29):10102-10106.
|
[15] |
HARTMAN R L, MCMULLEN J P, JENSEN K F. Deciding whether to go with the flow:evaluating the merits of flow reactors for synthesis[J]. Angew. Chem. Int. Edit., 2011, 50(33):7502-7519.
|
[16] |
LI W, LIU K, SIMMS R, et al. Microfluidic study of fast gas-liquid reactions[J]. J. Am. Chem. Soc., 2012, 134(6):3127-3132.
|
[17] |
JENSEN K F. Flow chemistry-microreaction technology comes of age[J]. AIChE J., 2017, 63(3):858-869.
|
[18] |
ZHAO H, SHAO L, CHEN J F. High-gravity process intensification technology and application[J]. Chem. Eng. J., 2010, 156(3):588-593.
|
[19] |
RAO D P, BHOWAL A, GOSWAMI P S. Process intensification in rotating packed beds (HIGEE):an appraisal[J]. Ind. Eng. Chem. Res., 2004, 43(4):1150-1162.
|
[20] |
SIDDIQUI S W, ZHAO Y, KUKUKOVA A, et al. Characteristics of a confined impinging jet reactor:energy dissipation, homogeneous and heterogeneous reaction products, and effect of unequal flow[J]. Ind. Eng. Chem. Res., 2009, 48(17):7945-7958.
|
[21] |
GAVI E, MARCHISIO D L, BARRESI A A. CFD modelling and scale-up of confined impinging jet reactors[J]. Chem. Eng. Sci., 2007, 62(8):2228-2241.
|
[22] |
LAM M K, LEE K T, MOHAMED A R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel:a review[J]. Biotechnol. Adv., 2010, 28(4):500-518.
|
[23] |
WEGNER J, CEYLAN S, KIRSCHNING A. Flow chemistry-a key enabling technology for (multistep) organic synthesis[J]. Adv. Synth. Catal., 2012, 354(1):17-57.
|
[24] |
GERBEC J A, MAGANA D, WASHINGTON A, et al. Microwave-enhanced reaction rates for nanoparticle synthesis[J]. J. Am. Chem. Soc., 2005, 127(45):15791-15800.
|
[25] |
刘有智. 化工过程强化:方法与技术[M]. 北京:化学工业出版社, 2017. LIU Y Z. Chemical Process Intensification:Methods and Technologies[M]. Beijing:Chemical Industry Press, 2017.
|
[26] |
ADAMSON A W, GAST A P. Physical Chemistry of Surfaces[M]. New York:John Wiley & Sons, Inc., 1997:6.
|
[27] |
LIAO Y, LUCAS D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chem. Eng. Sci., 2009, 64(15):3389-3406.
|
[28] |
LIAO Y, LUCAS D. A literature review on mechanisms and models for the coalescence process of fluid particles[J]. Chem. Eng. Sci., 2010, 65(10):2851-2864.
|
[29] |
张志炳, 田洪舟, 王丹亮, 等. 气液反应体系相界面传质强化研究[J]. 化学工程, 2016, 44(3):1-8. ZHANG Z B, TIAN H Z, WANG D L, et al. Intensification of interfacial mass transfer in gas-liquid reaction systems[J]. Chem. Eng.(China), 2016, 44(3):1-8.
|
[30] |
SOLSVIK J, JAKOBSEN H A. Development of fluid particle breakup and coalescence closure models for the complete energy spectrum of isotropic turbulence[J]. Ind. Eng. Chem. Res., 2016, 55(5):1449-1460.
|
[31] |
SOLSVIK J, SKJERVOLD V T, HAN L, et al. A theoretical study on drop breakup modeling in turbulent flows:the inertial subrange versus the entire spectrum of isotropic turbulence[J]. Chem. Eng. Sci., 2016, 149:249-265.
|
[32] |
LEE E R. Microdrop Generation[M]. Washington, DC:CRC Press, 2003:15.
|
[33] |
ZHONG S, ZOU X, ZHANG Z B, et al. A flexible image analysis method for measuring bubble parameters[J]. Chem. Eng. Sci., 2016, 141:143-153.
|
[34] |
李静海, 胡英, 袁权. 探索介尺度科学:从新角度审视老问题[J]. 中国科学:化学, 2014, 44(3):277-281. LI J H, HU Y, YUAN Q. Mesoscience:Exploring Old Problems From a New Angle[J]. Science China:Chemistry, 2014, 44(3):277-281.
|
[35] |
LI J H, HUANG W L. Towards Mesoscience:The Principle of Compromise in Competition[M]. Berlin:Springer, 2014:33.
|