CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 122-131.DOI: 10.11949/0438-1157.20221567
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wei SU1(), Dongxu MA1, Xu JIN1(), Zhongyan LIU1, Xiaosong ZHANG2
Received:
2022-11-05
Revised:
2022-12-23
Online:
2023-09-27
Published:
2023-06-05
Contact:
Xu JIN
苏伟1(), 马东旭1, 金旭1(), 刘忠彦1, 张小松2
通讯作者:
金旭
作者简介:
苏伟(1986—),男,博士,副教授,weisu@neepu.edu.cn
基金资助:
CLC Number:
Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics[J]. CIESC Journal, 2023, 74(S1): 122-131.
苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131.
1 | Wang F, Liang C H, Zhang X S. Research of anti-frosting technology in refrigeration and air conditioning fields: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 707-722. |
2 | Zhao Y, Guo Q, Lin T, et al. A review of recent literature on icing phenomena: transport mechanisms, their modulations and controls[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120074. |
3 | 冯欣楠, 鲁志伟, 梁记云, 等. 基于三维模型法500 kV交流输电线路绕击耐雷性能分析[J]. 东北电力大学学报, 2022, 42(1): 87-95. |
Feng X N, Lu Z W, Liang J Y, et al. Analysis of lightning protection performance of 500 kV AC transmission lines based on three-dimensional model method[J]. Journal of Northeast Electric Power University, 2022, 42(1): 87-95. | |
4 | 陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036. |
Chen Z D, Luo H L, Liu J C, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9): 4030-4036. | |
5 | 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613. |
Qiu J J, Zhang X S, Li W H. Experimental research on a novel frost-free air source heat pump system[J]. CIESC Journal, 2019, 70(4): 1605-1613. | |
6 | Xu W, Liu C P, Li A G, et al. Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China[J]. Renewable Energy, 2020, 146: 2124-2133. |
7 | 宋孟杰, 毛宁, 雷尚文, 等. 空气源热泵逆循环除霜优化研究现状与发展趋势[J]. 东北电力大学学报, 2021, 41(2): 1-19. |
Song M J, Mao N, Lei S W, et al. Research status and trends on reverse cycle defrosting for air source heat pump units[J]. Journal of Northeast Electric Power University, 2021, 41(2): 1-19. | |
8 | Su W, Li W H, Sun B, et al. Experimental study and correlations for heat and mass transfer coefficients in the dehumidifier of a frost-free heat pump system[J]. International Journal of Heat and Mass Transfer, 2019, 131: 450-462. |
9 | Wang Z H, Zheng Y X, Wang F H, et al. Experimental analysis on a novel frost-free air-source heat pump water heater system[J]. Applied Thermal Engineering, 2014, 70(1): 808-816. |
10 | 宫静, 王松庆, 唐天跻. 严寒地区高速公路建筑空气-土壤源热泵系统节能性运行策略研究[J]. 东北电力大学学报, 2021, 41(3): 63-68. |
Gong J, Wang S Q, Tang T J. Study on the efficiency operation strategy of air ground source heat pump system for highway construction in severe cold area[J]. Journal of Northeast Electric Power University, 2021, 41(3): 63-68. | |
11 | 刘中良, 黄玲艳, 勾昱君, 等. 结霜现象及抑霜技术的研究进展[J]. 制冷学报, 2010, 31(4): 1-6, 13. |
Liu Z L, Huang L Y, Gou Y J, et al. A review on frost formation and anti-frosting technology[J]. Journal of Refrigeration, 2010, 31(4): 1-6, 13. | |
12 | Song M J, Xia L, Deng S M. A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting[J]. Applied Energy, 2016, 161: 268-278. |
13 | Zhang Q L, Zhang L, Nie J Z, et al. Techno-economic analysis of air source heat pump applied for space heating in Northern China[J]. Applied Energy, 2017, 207: 533-542. |
14 | Léoni A, Mondot M, Durier F, et al. State-of-the-art review of frost deposition on flat surfaces[J]. International Journal of Refrigeration, 2016, 68: 198-217. |
15 | Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1: 15003. |
16 | Jeevahan J, Chandrasekaran M, Joseph G B, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. |
17 | Boreyko J B, Collier C P. Delayed frost growth on jumping-drop superhydrophobic surfaces[J]. ACS Nano, 2013, 7(2): 1618-1627. |
18 | Nath S, Ahmadi S F, Boreyko J B. A review of condensation frosting[J]. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(2): 81-101. |
19 | Zhao Y G, Yang C. Frost spreading on microscale wettability/morphology patterned surfaces[J]. Applied Thermal Engineering, 2017, 121: 136-145. |
20 | Boreyko J B, Hansen R R, Murphy K R, et al. Controlling condensation and frost growth with chemical micropatterns[J]. Scientific Reports, 2016, 6: 19131. |
21 | 牛蒙科, 韩芳明, 杨旭, 等. 基于TRNSYS的河水源热泵与电锅炉复合供暖系统仿真研究[J]. 东北电力大学学报, 2022, 42(6): 15-20. |
Niu M K, Han F M, Yang X, et al. Simulation research on combined heating system of river water source heat pump and electric boiler based on TRNSYS[J]. Journal of Northeast Electric Power University, 2022, 42(6): 15-20. | |
22 | Jin Y K, He Z Y, Guo Q, et al. Control of ice propagation by using polyelectrolyte multilayer coatings[J]. Angewandte Chemie (International Ed. In English), 2017, 56(38): 11436-11439. |
23 | Kim J, Jeon J, Kim D R, et al. Quantitative analysis of anti-freezing characteristics of superhydrophobic surfaces according to initial ice nuclei formation time and freezing propagation velocity[J]. International Journal of Heat and Mass Transfer, 2018, 126: 109-117. |
24 | Chu F Q, Lin Y K, Yan X, et al. Quantitative relations between droplet jumping and anti-frosting effect on superhydrophobic surfaces[J]. Energy and Buildings, 2020, 225:110315. |
25 | Yang S Y, Wu C Y, Zhao G L, et al. Condensation frosting and passive anti-frosting[J]. Cell Reports Physical Science, 2021, 2(7): 100474. |
26 | Nath S, Bisbano C E, Yue P T, et al. Duelling dry zones around hygroscopic droplets[J]. Journal of Fluid Mechanics, 2018, 853: 601-620. |
27 | Esmeryan K D, Castano C E, Mohammadi R, et al. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites[J]. Journal of Physics D: Applied Physics, 2018, 51(5): 55302. |
28 | Chavan S, Park D, Singla N, et al. Effect of latent heat released by freezing droplets during frost wave propagation[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(22): 6636-6644. |
29 | 苏伟. 空气源热泵抑霜机理及无霜热泵的初步探索[D]. 南京: 东南大学, 2019. |
Su W. Study on mechanism of frost suppression on air-source heat pump and preliminary study on frost-free heat pump[D]. Nanjing: Southeast University, 2019. | |
30 | Nath S, Boreyko J B. On localized vapor pressure gradients governing condensation and frost phenomena[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2016, 32(33): 8350-8365. |
31 | Faghri A, Zhang Y W, Howell J. Advanced Heat and Mass Transfer[M]. Columbia: Global Digital Press, 2010. |
[1] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[2] | Yudan WANG, Chen XU, Da RUAN, Jiang CHUN, Xuehu MA. Heat transfer characteristics of capillary pumping-replenishment evaporation on nanowire clusters surfaces with V-grooves [J]. CIESC Journal, 2024, 75(10): 3424-3436. |
[3] | Fajun WANG, An CHEN, Jianhong XU. Continuous-flow synthesis of Pigment Red 57 in a microreactor system [J]. CIESC Journal, 2024, 75(10): 3600-3609. |
[4] | Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application [J]. CIESC Journal, 2024, 75(1): 159-170. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[7] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[8] | Xiao YANG, Rui DING, Mohan LI, Zhengchang SONG. Effect of oxygen concentration on homogeneous/heterogeneous coupled reaction characteristics of methane in microchannel [J]. CIESC Journal, 2022, 73(12): 5427-5437. |
[9] | Ran LIU, Jie LI, Yubing WANG, Hongbo ZHAN, Dalin ZHANG. Experimental study on condensation heat transfer of R134a in mini channel with micro diamond fins [J]. CIESC Journal, 2022, 73(11): 4938-4947. |
[10] | Wenjing ZHAO, Zhirong TU, Xiangkai MENG, Jinbo JIANG, Xudong PENG. Effect of irregular V-shaped surface texture on the performance of mechanical face seal [J]. CIESC Journal, 2022, 73(10): 4585-4593. |
[11] | Yingjie LI, Qixia LI, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Influence of wavy-structured superhydrophobic surfaces on coalescence-induced droplet jumping [J]. CIESC Journal, 2022, 73(10): 4345-4354. |
[12] | SU Wei, LU Zhifei, ZHANG Xiaosong. Frost growth dynamics on vertical superhydrophobic fins [J]. CIESC Journal, 2021, 72(S1): 244-256. |
[13] | WU Yanpeng, LEI Xiaoyu, LU Yuming, CHEN Huini. Research progress of superhydrophobic anti-reflection films applied on transparent surfaces of solar devices [J]. CIESC Journal, 2021, 72(S1): 21-29. |
[14] | Shurong GAO, Jiaxin JIN, Bojian WEI, Xiaodong WANG. Research progress and future prospects of anti-/de-icing technology for droplets impact on hydrophobic/superhydrophobic surfaces [J]. CIESC Journal, 2021, 72(8): 3946-3957. |
[15] | Hongpeng JIANG, Minli BAI, Dongdong GAO, Linsong GAO, Jizu LYU. Experimental study on flow boiling heat transfer on superhydrophobic/hydrophilic structure surface [J]. CIESC Journal, 2021, 72(8): 4093-4103. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||