CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3628-3639.DOI: 10.11949/0438-1157.20230531
• Ionic Liquids and Green Processes • Previous Articles Next Articles
Meisi CHEN(), Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG(), Zhibing ZHANG()
Received:
2023-05-31
Revised:
2023-07-18
Online:
2023-11-20
Published:
2023-09-25
Contact:
Feng ZHANG, Zhibing ZHANG
陈美思(), 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋(), 张志炳()
通讯作者:
张锋,张志炳
作者简介:
陈美思(1996—),女,博士研究生,chenmeisi1995@163.com
基金资助:
CLC Number:
Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion[J]. CIESC Journal, 2023, 74(9): 3628-3639.
陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639.
吸收剂 | 吸收量/(mol/kg) | 吸收条件 | 文献 |
---|---|---|---|
[Bmim][HSO4] | 0.3 | CO2: 12 ml/min;25℃ | [ |
[Bmim][HSO4]-SiO2 | 0.53 | ||
[Bmim][BF4] | 0.24 | CO2: 12 ml/min;25℃ | [ |
[Bmim][BF4]-SiO2 | 0.51 | ||
[Bmim][PF6] | 0.09 | ||
[Bmim][PF6]-SiO2 | 0.36 | ||
[Bmim][TfO] | 0.28 | ||
[Bmim][TfO]-SiO2 | 0.43 | ||
[Bmim][Tf2N] | 0.12 | ||
[Bmim][Tf2N]-SiO2 | 0.45 |
Table1 Comparison of CO2 uptake between silica-based ionic liquid microparticles and pure ionic liquid
吸收剂 | 吸收量/(mol/kg) | 吸收条件 | 文献 |
---|---|---|---|
[Bmim][HSO4] | 0.3 | CO2: 12 ml/min;25℃ | [ |
[Bmim][HSO4]-SiO2 | 0.53 | ||
[Bmim][BF4] | 0.24 | CO2: 12 ml/min;25℃ | [ |
[Bmim][BF4]-SiO2 | 0.51 | ||
[Bmim][PF6] | 0.09 | ||
[Bmim][PF6]-SiO2 | 0.36 | ||
[Bmim][TfO] | 0.28 | ||
[Bmim][TfO]-SiO2 | 0.43 | ||
[Bmim][Tf2N] | 0.12 | ||
[Bmim][Tf2N]-SiO2 | 0.45 |
反应底物 | 反应条件 | 转化率/%,转化时间/h | |
---|---|---|---|
硅基[C1C6Im][HCO3]微颗粒 | [C1C6Im][HCO3]体系 | ||
氧化苯乙烯 | 60 ℃ 0.4 MPa | 96.08%,22.5 h | 96.08%,65 h |
环氧氯丙烷 | 97%,10 h | 97%,23.3 h | |
烯丙基缩水甘油醚 | 95%,14.5 h | 95%,31.2 h | |
环氧己烷 | 69%,26.5 h | 51%,26.5 h | |
环氧环己烷 | 9.1%,25 h | 4%,25 h |
Table 2 Comparison of the kinetics of different substrates involved in cycloaddition reactions
反应底物 | 反应条件 | 转化率/%,转化时间/h | |
---|---|---|---|
硅基[C1C6Im][HCO3]微颗粒 | [C1C6Im][HCO3]体系 | ||
氧化苯乙烯 | 60 ℃ 0.4 MPa | 96.08%,22.5 h | 96.08%,65 h |
环氧氯丙烷 | 97%,10 h | 97%,23.3 h | |
烯丙基缩水甘油醚 | 95%,14.5 h | 95%,31.2 h | |
环氧己烷 | 69%,26.5 h | 51%,26.5 h | |
环氧环己烷 | 9.1%,25 h | 4%,25 h |
反应底物 | 反应温度 | 转化率/%,转化时间/h,CO2分压 | |
---|---|---|---|
硅基[C1C6Im][HCO3]微颗粒 | [C3C4Im][HCO3]-SiO2微颗粒 | ||
氧化苯乙烯 | 60℃ | 96.08%,22.5 h,0.4 MPa | 95%,12 h,0.3 MPa |
环氧氯丙烷 | 97%,10 h,0.4 MPa | 95.3%,2.5 h,0.3 MPa | |
烯丙基缩水甘油醚 | 95%,14.5 h,0.4 MPa | 93.4%,10.2 h,0.3 MPa |
Table 3 Catalytic performance of silica-based IL microparticles in cycloaddition reactions
反应底物 | 反应温度 | 转化率/%,转化时间/h,CO2分压 | |
---|---|---|---|
硅基[C1C6Im][HCO3]微颗粒 | [C3C4Im][HCO3]-SiO2微颗粒 | ||
氧化苯乙烯 | 60℃ | 96.08%,22.5 h,0.4 MPa | 95%,12 h,0.3 MPa |
环氧氯丙烷 | 97%,10 h,0.4 MPa | 95.3%,2.5 h,0.3 MPa | |
烯丙基缩水甘油醚 | 95%,14.5 h,0.4 MPa | 93.4%,10.2 h,0.3 MPa |
1 | Chiang Y C, Chiang P C, Huang C P. Effects of pore structure and temperature on VOC adsorption on activated carbon[J]. Carbon, 2001, 39(4): 523-534. |
2 | Jarraya I, Fourmentin S, Benzina M, et al. VOC adsorption on raw and modified clay materials[J]. Chemical Geology, 2010, 275(1): 1-8. |
3 | Kim K J, Ahn H G. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating[J]. Microporous&Mesoporous Materials, 2012, 152(152): 78-83. |
4 | Li R, Xu J, Wang L J, et al. Reduction of VOC emissions by a membrane-based gas absorption process[J]. Journal of Environmental Sciences, 2009, 21(8): 1096-1102. |
5 | White C M, Strazisar B R, Granite E J, et al. Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers[J]. Journal of the Air & Waste Management Association, 2003, 53(6): 645-715. |
6 | Rao A B, Rubin E S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control[J]. Environmental Science & Technology, 2002, 36(20): 4467-4475. |
7 | Greer A J, Jacquemin J, Hardacre C J M. Industrial applications of ionic liquids[J]. Molecules, 2020, 25(21): 5207. |
8 | Pei Y C, Zhang Y X, Ma J, et al. Ionic liquids for advanced materials[J]. Materials Today Nano, 2022, 17: 100159. |
9 | Buettner C S, Cognigni A, Schröder C, et al. Surface-active ionic liquids: a review[J]. Journal of Molecular Liquids, 2022, 347: 118160. |
10 | Nordness O, Brennecke J F. Ion dissociation in ionic liquids and ionic liquid solutions[J]. Chemical reviews, 2020, 120(23): 12873-12902. |
11 | Cho C W, Pham T P T, Zhao Y, et al. Review of the toxic effects of ionic liquids[J]. Science of The Total Environment, 2021, 786: 147309. |
12 | Xiong W, Shi M, Peng L, et al. Low viscosity superbase protic ionic liquids for the highly efficient simultaneous removal of H2S and CO2 from CH4 [J]. Separation and Purification Technology, 2021, 263: 118417. |
13 | Amith W D, Araque J C, Margulis C J. A pictorial view of viscosity in ionic liquids and the link to nanostructural heterogeneity[J]. The Journal of Physical Chemistry Letters, 2020, 11(6): 2062-2066. |
14 | Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. |
15 | Yu G R, Zhang S J, Yao X Q, et al. Design of task-specific ionic liquids for capturing CO2: a molecular orbital study[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2875-2880. |
16 | Cui G K, Liu J X, Lyu S Z, et al. Efficient and reversible SO2 absorption by environmentally friendly task-specific deep eutectic solvents of PPZBr+Gly[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14236-14246. |
17 | Zhang N, Huang Z H, Zhang H M, et al. Highly efficient and reversible CO2 capture by task-specific deep eutectic solvents[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13321-13329. |
18 | Shi M Z, Xiong W K, Zhang X M, et al. Highly efficient and selective H2S capture by task-specific deep eutectic solvents through chemical dual-site absorption[J]. Separation and Purification Technology, 2022, 283: 120167. |
19 | Tamilarasan P, Ramaprabhu S. Task-specific functionalization of graphene for use as a cathode catalyst support for carbon dioxide conversion[J]. Journal of Materials Chemistry A, 2015, 3(2): 797-804. |
20 | Chen F F, Huang K, Fan J P, et al. Chemical solvent in chemical solvent: a class of hybrid materials for effective capture of CO2 [J]. AIChE Journal, 2018, 64(2): 632-639. |
21 | Chen M S, Li M J, Zhang L, et al. Intensification of amino acid ionic liquids with different additives for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(37): 12082-12089. |
22 | Li A L, Tian Z Q, Yan T Y, et al. Anion-functionalized task-specific ionic liquids: molecular origin of change in viscosity upon CO2 capture[J]. The Journal of Physical Chemistry B, 2014, 118(51): 14880-14887. |
23 | Chen Y, Mutelet F, Jaubert J-N. Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT equation of state[J]. The Journal of Physical Chemistry B, 2012, 116(49): 14375-14388. |
24 | Zhang X, Bao D, Huang Y, et al. Gas-liquid mass-transfer properties in CO2 absorption system with ionic liquids[J]. AIChE Journal, 2014, 60(8): 2929-2939. |
25 | Xu F, Gao H, Dong H, et al. Solubility of CO2 in aqueous mixtures of monoethanolamine and dicyanamide-based ionic liquids[J]. Fluid Phase Equilibria, 2014, 365: 80-87. |
26 | Binks B P, Murakami R. Phase inversion of particle-stabilized materials from foams to dry water[J]. Nature Materials, 2006, 5(11): 865-869. |
27 | Hasenzahl S, Gray A, Walzer E, et al. Dry water for the skin[J]. SÖFW-Journal, 2005, 131(3): 2-8. |
28 | Shirato K, Satoh M. "Dry ionic liquid" as a newcomer to "dry matter"[J]. Soft Matter, 2011, 7(16): 7191-7193. |
29 | Saleh K, Forny L, Guigon P, et al. Dry water: from physico-chemical aspects to process-related parameters[J]. Chemical Engineering Research and Design, 2011, 89(5): 537-544. |
30 | Ding A, Yang L, Fan S, et al. Reversible methane storage in porous hydrogel supported clathrates[J]. Chemical Engineering Science, 2013, 96: 124-130. |
31 | Shi B H, Fan S S, Lou X. Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates[J]. Chemical Engineering Science, 2014, 109: 315-325. |
32 | Li C H, Gao K X, Meng Y N, et al. Solution thermodynamics of imidazolium-based ionic liquids and volatile organic compounds: benzene and acetone[J]. Journal of Chemical & Engineering Data, 2015, 60(6): 1600-1607. |
33 | Bedia J, Ruiz E, de Riva J, et al. Optimized ionic liquids for toluene absorption[J]. AIChE Journal, 2013, 59(5): 1648-1656. |
34 | Wang W, Ma X, Grimes S, et al. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal[J]. Chemical Engineering Journal, 2017, 328: 353-359. |
35 | Salar-García M, Ortiz-Martínez V, Hernández-Fernández F, et al. Ionic liquid technology to recover volatile organic compounds(VOCs)[J]. Journal of Hazardous Materials, 2017, 321: 484-499. |
36 | Hirota Y, Maeda Y, Yamamoto Y, et al. Organosilica membrane with ionic liquid properties for separation of toluene/H2 mixture[J]. Materials, 2017, 10(8): 901. |
37 | Zhou M, Li S, Chai S, et al. Hydrophobically modified mesoporous silica supported Pt as a dual-function adsorbent buffer-catalyst for toluene removal under low-temperature[J]. New Journal of Chemistry, 2023, 47: 1767-1776. |
38 | Karimi B, Khorasani M, Bakhshandeh R F, et al. Tungstate supported on periodic mesoporous organosilica with imidazolium framework as an efficient and recyclable catalyst for the selective oxidation of sulfides[J]. ChemPlusChem, 2015, 80(6): 990-999. |
39 | Rostamnia S, Doustkhah E, Bulgar R, et al. Supported palladium ions inside periodic mesoporous organosilica with ionic liquid framework(Pd@IL-PMO) as an efficient green catalyst for S-arylation coupling[J]. Microporous and Mesoporous Materials, 2016, 225: 272-279. |
40 | Li X Y, Liu X M, Yu Y S, et al. Preparation and characterization of nanometre silicon-based ionic liquid micro-particle materials[J]. Journal of Molecular Liquids, 2020, 311: 113327. |
41 | 曲江源, 齐娜娜, 关彦军, 等. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128. |
Qu J Y, Qi N N, Guan Y J, et al. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower[J]. CIESC Journal, 2019, 70(6): 2117-2128. | |
42 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
43 | Romanos G E, Schulz P S, Bahlmann M, et al. CO2 capture by novel supported ionic liquid phase systems consisting of silica nanoparticles encapsulating amine-functionalized ionic liquids[J]. The Journal of Physical Chemistry C, 2014, 118(42): 24437-24451. |
44 | Mirzaei M, Mokhtarani B, Badiei A, et al. Improving physical adsorption of CO2 by ionic liquids-loaded mesoporous silica[J]. Chemical Engineering & Technology, 2018, 41(7): 1272-1281. |
45 | Zheng S, Zeng S J, Li G L, et al. Superior selective adsorption of trace CO2 induced by chemical interaction and created ultra-micropores of ionic liquid composites[J]. Chemical Engineering Journal, 2023, 451: 138736. |
46 | Pohako-Esko K, Bahlmann M, Schulz P S, et al. Chitosan containing supported ionic liquid phase materials for CO2 absorption[J]. Industrial & Engineering Chemistry Research, 2016, 55(25): 7052-7059. |
47 | Duczinski R, Polesso B B, Bernard F L, et al. Enhancement of CO2/N2 selectivity and CO2 uptake by tuning concentration and chemical structure of imidazolium-based ILs immobilized in mesoporous silica[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103740. |
48 | Chen M, Wang X, Liu X, et al. Anhydrous "dry ionic liquids": a promising absorbent for CO2 capture[J]. Journal of Molecular Liquids, 2020, 305: 112810. |
49 | Mirzaei M, Badiei A R, Mokhtarani B, et al. Experimental study on CO2 sorption capacity of the neat and porous silica supported ionic liquids and the effect of water content of flue gas[J]. Journal of Molecular Liquids, 2017, 232: 462-470. |
50 | Zhai Q G, Xie S J, Fan W Q, et al. Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(Ⅰ) oxide co-catalysts with a core-shell structure[J]. Angewandte Chemie International Edition, 2013, 52(22): 5776-5779. |
51 | Kuhl K P, Hatsukade T, Cave E R, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces[J]. Journal of the American Chemical Society, 2014, 136(40): 14107-14113. |
52 | Bae K L, Kim J, Lim C K, et al. Colloidal zinc oxide-copper(Ⅰ) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane[J]. Nature Communications, 2017, 8(1): 1156. |
53 | Obert R, Dave B C. Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices[J]. Journal of the American Chemical Society, 1999, 121(51): 12192-12193. |
54 | Riduan S N, Zhang Y, Ying J Y. Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts[J]. Angewandte Chemie International Edition, 2009, 48(18): 3322-3325. |
55 | Kuk S K, Singh R K, Nam D H, et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade[J]. Angewandte Chemie International Edition, 2017, 56(14): 3827-3832. |
56 | Maeda C, Taniguchi T, Ogawa K, et al. Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Angewandte Chemie International Edition, 2015, 54(1): 134-138. |
57 | Kathalikkattil A C, Babu R, Tharun J, et al. Advancements in the conversion of carbon dioxide to cyclic carbonates using metal organic frameworks as catalysts[J]. Catalysis Surveys from Asia, 2015, 19(4): 223-235. |
58 | Wu X, North M. A Bimetallic aluminium(salphen) complex for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. ChemSusChem, 2017, 10(1): 74-78. |
59 | Sakakura T, Saito Y, Okano M, et al. Selective conversion of carbon dioxide to dimethyl carbonate by molecular catalysis[J]. The Journal of Organic Chemistry, 1998, 63(20): 7095-7096. |
60 | Tamboli A H, Chaugule A A, Kim H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chemical Engineering Journal, 2017, 323: 530-544. |
61 | Zhao T, Hu X, Wu D, et al. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as a recyclable catalyst and dehydrant[J]. ChemSusChem, 2017, 10(9): 2046-2052. |
62 | Liu A H, Yu B, He L N. Catalytic conversion of carbon dioxide to carboxylic acid derivatives[J]. Greenhouse Gases: Science and Technology, 2015, 5(1): 17-33. |
63 | Banerjee A, Dick G R, Yoshino T, et al. Carbon dioxide utilization via carbonate-promoted C—H carboxylation[J]. Nature, 2016, 531(7593): 215-219. |
64 | Schaefer A, Saak W, Haase D, et al. Silyl cation mediated conversion of CO2 into benzoic acid, formic acid, and methanol[J]. Angewandte Chemie-International Edition, 2012, 51(12): 2981-2984. |
65 | Yu B, Zhao Y F, Zhang H Y, et al. Pd/C-catalyzed direct formylation of aromatic iodides to aryl aldehydes using carbon dioxide as a C1 resource[J]. Chemical Communications, 2014, 50(18): 2330-2333. |
66 | He X, Li X Y, Song Y, et al. Synthesis of urea derivatives using carbon dioxide as carbonylation reagent in ionic liquids[J]. Current Organocatalysis, 2017, 4(2): 112-121. |
67 | Kember M R, Williams C K. Efficient magnesium catalysts for the copolymerization of epoxides and CO2; Using water to synthesize polycarbonate polyols[J]. Journal of the American Chemical Society, 2012, 134(38): 15676-15679. |
68 | Chapman A M, Keyworth C, Kember M R, et al. Adding value to power station captured CO2: tolerant Zn and Mg homogeneous catalysts for polycarbonate polyol production[J]. ACS Catalysis, 2015, 5(3): 1581-1588. |
69 | Xu B H, Wang J Q, Sun J, et al. Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach[J]. Green Chemistry, 2015, 17(1): 108-122. |
70 | Kawanami H, Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts[J]. Chemical Communications, 2000(21): 2089-2090. |
71 | Decortes A, Belmonte M M, Benet-Buchholz J, et al. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst[J]. Chemical Communications, 2010, 46(25): 4580-4582. |
72 | Fevre M, Pinaud J, Leteneur A, et al. Imidazol(in)ium hydrogen carbonates as a genuine source of N-heterocyclic carbenes(NHCs): applications to the facile preparation of NHC metal complexes and to NHC-organocatalyzed molecular and macromolecular syntheses[J]. Journal of the American Chemical Society, 2012, 134(15): 6776-6784. |
73 | 彭家建, 邓友全. 室温离子液体催化合成碳酸丙烯酯[J]. 催化学报, 2001, 22(6): 598-600. |
Peng J J, Deng Y Q. Formation of propylene carbonate catalyzed by room temperature ionic liquids[J]. Chinese Journal of Catalysis, 2001, 22(6): 598-600. | |
74 | Sun J, Fujita S I, Zhao F, et al. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions[J]. Green Chemistry, 2004, 6(12): 613-616. |
75 | Wang J Q, Dong K, Cheng W G, et al. Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides[J]. Catalysis Science & Technology, 2012, 2(7): 1480-1484. |
76 | Zhou H, Zhang W Z, Liu C H, et al. CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides[J]. The Journal of Organic Chemistry, 2008, 73(20): 8039-8044. |
77 | Liu J, Yang G, Liu Y, et al. Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids[J]. Green Chemistry,2020, 22(14): 4509-4515. |
78 | Li X, Wang Y, Liu X, et al. Micro interfacial effect: the stability of catalytic activity under gas-liquid reaction pressure changes[J]. Chemical Engineering Journal, 2022, 440: 135560. |
79 | Wang B R, Yang G Q, Tian H Z, et al. A new model of bubble Sauter mean diameter in fine bubble-dominated columns[J]. Chemical Engineering Journal, 2020, 393: 124673. |
80 | Qian H, Tian H, Yang G, et al. Microinterface intensification in hydrogenation and air oxidation processes[J]. Chinese Journal of Chemical Engineering, 2022, 50: 292-300. |
81 | Tian H Z, Pi S F, Feng Y C, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[7] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[8] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[11] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[12] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[13] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[14] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[15] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 585
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||