CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 102-115.DOI: 10.11949/j.issn.0438-1157.20171366
Previous Articles Next Articles
DONG Zhengya1,2, CHEN Guangwen1, ZHAO Shuainan1, YUAN Quan1
Received:
2017-10-12
Revised:
2017-11-01
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171366
Supported by:
supported by the National Natural Science Foundation of China (91634204, U1608221, 21225627) and DICP (DICP ZZBS201706).
董正亚1,2, 陈光文1, 赵帅南1, 袁权1
通讯作者:
陈光文
基金资助:
国家自然科学基金项目(91634204,U1608221,21225627);大连化物所科研创新基金项目(DICP ZZBS201706)。
CLC Number:
DONG Zhengya, CHEN Guangwen, ZHAO Shuainan, YUAN Quan. Sonochemical microreactor-synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69(1): 102-115.
董正亚, 陈光文, 赵帅南, 袁权. 声化学微反应器——超声和微反应器协同强化[J]. 化工学报, 2018, 69(1): 102-115.
[1] | STANKIEWICZ A, MOULIJN J A. Process intensification[J]. Ind. Eng. Chem. Res., 2002, 41(8):1920-1924. |
[2] | DONG Z Y, CHEN G W. Sonochemical microreactor-a synergistic combination of sonochemistry and microreactor to intensify mixing, mass transfer and prevent clogging[C]//Proceedings of the 13th International Conference on Microreaction Technology. Budapest, Hungary:AK Congress, 2014. |
[3] | DONG Z Y, YAO C Q, ZHANG X L, et al. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification[J]. Lab Chip, 2015, 15(4):1145-1152. |
[4] | DONG Z Y, YAO C Q, ZHANG Y C, et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors[J]. AIChE Journal, 2016, 62(4):1294-1307. |
[5] | DONG Z Y, ZHAO S N, ZHANG Y C, et al. Mixing and residence time distribution in ultrasonic microreactors[J]. AIChE Journal, 2017, 63(4):1408-1418. |
[6] | ZHAO S N, DONG Z Y, YAO C Q, et al. Liquid-liquid two-phase flow in ultrasonic microreactors:cavitation, emulsification and mass transfer enhancement[J]. AIChE Journal, 2018, 64:DOI:10.1002/aic.16010 |
[7] | 董正亚. 声化学微反应器中传质过程的强化[D]. 大连:中国科学院大连化学物理研究所, 2016. DONG Z Y. Intensification of mass transfer processes in sonochemical microreactor[D]. Dalian:Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2016. |
[8] | JÄHNISCH K, HESSEL V, LÖWE H, et al. Chemistry in microstructured reactors[J]. Angew. Chem. Int. Ed., 2004, 43(4):406-446. |
[9] | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4):427-439. CHEN G W, QUAN Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4):427-439. |
[10] | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1):63-75. CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro chemical engineering[J]. CIESC Journal, 2013, 64(1):63-75. |
[11] | HESSEL V, LÖWE H, SCHÖNFELD F. Micromixers-a review on passive and active mixing principles[J]. Chem. Eng. Sci., 2005, 60(8/9):2479-2501. |
[12] | KOCKMANN N. Transport Phenomena in Micro Process Engineering[M]. Berlin Heidelberg:Springer-Verlag, 2008. |
[13] | POE S L, CUMMINGS M A, HAAF M P, et al. Solving the clogging problem:precipitate-forming reactions in flow[J]. Angew. Chem. Int. Ed., 2006, 45(10):1544-1548. |
[14] | STANKIEWICZ A. On the applications of alternative energy forms and transfer mechanisms in microprocessing systems[J]. Ind. Eng. Chem. Res., 2007, 46(12):4232-4235. |
[15] | 冯若, 李化茂. 声化学及其应用[M]. 合肥:安徽科学技术出版社, 1992. FENG R, LI H M. Sonochemistry and Its Applications[M]. Hefei:Anhui Science and Technology Press, 1992. |
[16] | LEIGHTON T G.What is ultrasound[J].Prog. Biophys. Mol. Biol., 2007, 93(1):3-83 |
[17] | 秦炜, 原永辉, 戴猷元. 超声场对化工分离过程的强化[J]. 化工进展, 1995, (1):1-5. QIN W, YUAN Y H, DAI Y Y. Enhancement of chemical separation process by ultrasonic field[J]. Chemical Industry and Engineering Progress, 1995, (1):1-5. |
[18] | GOGATE P R. Cavitational reactors for process intensification of chemical processing applications:a critical review[J]. Chemical Engineering and Processing, 2008, 47(4):515-527. |
[19] | GOGATE P R, SUTKAR V S, PANDIT A B. Sonochemical reactors:important design and scale up considerations with a special emphasis on heterogeneous systems[J]. Chem. Eng. J., 2011, 166(3):1066-1082. |
[20] | BIRKIN P R, OFFIN D G, VIAN C J B, et al. Investigation of noninertial cavitation produced by an ultrasonic horn[J]. J. Acoust. Soc. Am., 2011, 130(5):3297-3308. |
[21] | HASHMI A, YU G, REILLY-COLLETTE M, et al. Oscillating bubbles:a versatile tool for lab on a chip applications[J]. Lab Chip, 2012, 12(21):4216-4227. |
[22] | LAUTERBORN W, KURZ T. Physics of bubble oscillations[J]. Reports on Progress in Physics, 2010, 73(10):106501. |
[23] | 王成会, 林书玉. 超声波作用下气泡的非线性振动[J]. 力学学报, 2010, 42(6):1050-1059. WANG C H, LIN S Y. The nonlinear oscillation of bubbles in the ultrasonic field[J]. Chinese Journal of Theoretical & Applied Mechanics, 2010, 42(6):1050-1059. |
[24] | MINNAERT M. On musical air-bubbles and the sounds of running water[J]. Philosophical Magazine, 1933, 16(104):235-248. |
[25] | ASHOKKUMAR M, LEE J, KENTISH S, et al. Bubbles in an acoustic field:an overview[J]. Ultrasonics Sonochemistry, 2007, 14(4):470-475. |
[26] | LEIGHTON T G. Bubble population phenomena in acoustic cavitation[J]. Ultrasonics Sonochemistry, 1995, 2(2):S123-S136. |
[27] | FREITAS S, HIELSCHER G, MERKLE H P, et al. Continuous contact-and contamination-free ultrasonic emulsification-a useful tool for pharmaceutical development and production[J]. Ultrasonics Sonochemistry, 2006, 13(1):76-85. |
[28] | NICKEL K, NEIS U. Ultrasonic disintegration of biosolids for improved biodegradation[J]. Ultrasonics Sonochemistry, 2007, 14(4):450-455. |
[29] | CINTAS P, MANTEGNA S, GAUDINO E C, et al. A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel[J]. Ultrasonics Sonochemistry, 2010, 17(6):985-989. |
[30] | DEZHKUNOV N V, FRANCESCUTTO A, CIUTI P, et al. Enhancement of sonoluminescence emission from a multibubble cavitation zone[J]. Ultrasonics Sonochemistry, 2000, 7(1):19-24. |
[31] | MAHULKAR A V, BAPAT P S, PANDIT A B, et al. Steam bubble cavitation[J]. AIChE Journal, 2008, 54(7):1711-1724. |
[32] | LIU Y N, JIN D, LU X P, et al. Study on degradation of dimethoate solution in ultrasonic airlift loop reactor[J]. Ultrasonics Sonochemistry, 2008, 15(5):755-760. |
[33] | HERRAN N S, LOPEZ J L C, PEREZ J A S. Gas-liquid mass transfer in sonicated bubble columns. Effect of reactor diameter and liquid height[J]. Ind. Eng. Chem. Res., 2012, 51(6):2769-2774. |
[34] | KUHN S, NOEL T, GU L, et al. A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions[J]. Lab Chip, 2011, 11(15):2488-2492. |
[35] | ALJBOUR S, YAMADA H, TAGAWA T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor[J]. Chemical Engineering and Processing, 2009, 48(6):1167-1172. |
[36] | ALJBOUR S, TAGAWA T, YAMADA H. Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions[J]. J. Ind. Eng. Chem., 2009, 15(6):829-834. |
[37] | HUBNER S, KRESSIRER S, KRALISCH D, et al. Ultrasound and microstructures-a promising combination?[J]. ChemSusChem, 2012, 5(2):279-288. |
[38] | ROBERGE D, RAINONE F, QUITTMANN W, et al. Method for preventing plugging of a continuous-reaction channel-system and micro-reactor for carrying out the method:US20150158007[P]. 2015-06-11. |
[39] | TANDIONO, OHL S W, OW D S W, et al. Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves[J]. Lab Chip, 2010, 10(14):1848-1855. |
[40] | VERHAAGEN B, LIU Y L, PÉREZ A G, et al. Scaled-up sonochemical microreactor with increased efficiency and reproducibility[J]. ChemistrySelect, 2016, 1(2):136-139. |
[41] | TOVAR A R, LEE A P. Lateral cavity acoustic transducer[J]. Lab Chip, 2009, 9(1):41-43. |
[42] | AHMED D, MAO X, JULURI B K, et al. A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles[J]. Microfluidics and Nanofluidics, 2009, 7(5):727-731. |
[43] | AHMED D, MAO X, SHI J J, et al. A millisecond micromixer via single-bubble-based acoustic streaming[J]. Lab Chip, 2009, 9(18):2738-2741. |
[44] | RIVAS D F, PROSPERETTI A, ZIJLSTRA A G, et al. Efficient sonochemistry through microbubbles generated with micromachined surfaces[J]. Angew. Chem. Int. Ed., 2010, 49(50):9699-9701. |
[45] | RIVAS D F, STRICKER L, ZIJLSTRA A G, et al. Ultrasound artificially nucleated bubbles and their sonochemical radical production[J]. Ultrasonics Sonochemistry, 2013, 20(1):510-524. |
[46] | OZCELIK A, AHMED D, XIE Y L, et al. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls[J]. Analytical Chemistry, 2014, 86(10):5083-5088. |
[47] | TANDIONO, OHL S W, OW D S W, et al. Sonochemistry and sonoluminescence in microfluidics[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(15):5996-5998. |
[48] | RIFE J C, BELL M I, HORWITZ J S, et al. Miniature valveless ultrasonic pumps and mixers[J]. Sensors and Actuators A-Physical, 2000, 86(1/2):135-140. |
[49] | BENGTSSON M, LAURELL T. Ultrasonic agitation in microchannels[J]. Analytical and Bioanalytical Chemistry, 2004, 378(7):1716-1721. |
[50] | LUONG T D, PHAN V N, NGUYEN N T. High-throughput micromixers based on acoustic streaming induced by surface acoustic wave[J]. Microfluidics and Nanofluidics, 2011, 10(3):619-625. |
[51] | THO P, MANASSEH R, OOI A. Cavitation microstreaming patterns in single and multiple bubble systems[J]. J. Fluid Mech., 2007, 576:191-233. |
[52] | ELDER S A. Cavitation microstreaming[J]. J. Acoust. Soc. Am., 1959, 31(1):54-64. |
[53] | WIKLUND M, GREEN R, OHLIN M. Acoustofluidics 14:applications of acoustic streaming in microfluidic devices[J]. Lab Chip, 2012, 12(14):2438-2451. |
[54] | WANG C, RALLABANDI B, HILGENFELDT S. Frequency dependence and frequency control of microbubble streaming flows[J]. Physics of Fluids, 2013, 25(2):022002. |
[55] | FOWLER C J, HAVERLOCK T J, MOYER B A, et al. Enhanced anion exchange for selective sulfate extraction:overcoming the Hofmeister bias[J]. J. Am. Chem. Soc., 2008, 130(44):14386-14387. |
[56] | SAMANT K D, SINGH D J, NG K M. Design of liquid-liquid phase transfer catalytic processes[J]. AIChE Journal, 2001, 47(8):1832-1848. |
[57] | MATSUYAMA K, MINE K, KUBO H, et al. Design of micromixer for emulsification and application to conventional commercial plant for cosmetic[J]. Chem. Eng. J., 2011, 167(2):727-733. |
[58] | ZHAO Y C, CHEN G W, YUAN Q. Liquid-liquid two-phase mass transfer in the T-junction microchannels[J]. AIChE Journal, 2007, 53(12):3042-3053. |
[59] | 陈光文, 赵玉潮, 袁权. 微尺度下液-液流动与传质特性的研究进展[J]. 化工学报, 2010, 61(7):1627-1635. CHEN G W, ZHAO Y C, QUAN Q. Advances in flow hydrodynamic and mass transfer characteristics of liquid phase in microscale[J]. CIESC Journal, 2010, 61(7):1627-1635. |
[60] | KASHID M N, RENKEN A, KIWI-MINSKER L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chem. Eng. Sci., 2011, 66(17):3876-3897. |
[61] | JOHN J J, KUHN S, BRAEKEN L, et al. Ultrasound assisted liquid-liquid extraction in microchannels-a direct contact method[J]. Chemical Engineering and Processing, 2016, 102:37-46. |
[62] | CADWELL M L, FOGLER H S. Ultrasonic gas absorption and acoustic streaming observations[J]. Chem. Eng. Prog. Symp. Series, 1971, 67(109):124-127. |
[63] | GONDREXON N, RENAUDIN V, BOLDO P, et al. Degassing effect and gas-liquid transfer in a high frequency sonochemical reactor[J]. Chem. Eng. J., 1997, 66(1):16-21. |
[64] | KUMAR A, GOGATE P R, PANDIT A B, et al. Gas liquid mass transfer studies in sonochemical reactors[J]. Ind. Eng. Chem. Res., 2004, 43(8):1812-1819. |
[65] | LAUGIER F, ANDRIANTSIFERANA C, WILHELM A M, et al. Ultrasound in gas-liquid systems:effects on solubility and mass transfer[J]. Ultrasonics Sonochemistry, 2008, 15(6):965-972. |
[66] | YUE J, CHEN G W, YUAN Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chem. Eng. Sci., 2007, 62(7):2096-2108. |
[67] | NIEVES-REMACHA M J, KULKARNI A A, JENSEN K F. Gas-liquid flow and mass transfer in an advanced-flow reactor[J]. Ind. Eng. Chem. Res., 2013, 52(26):8996-9010. |
[68] | HARTMAN R L, NABER J R, ZABORENKO N, et al. Overcoming the challenges of solid bridging and constriction during Pd-Catalyzed C-N bond formation in microreactors[J]. Org. Process. Res. Dev., 2010, 14(6):1347-1357. |
[69] | NOËL T, NABER J R, HARTMAN R L, et al. Palladium-catalyzed amination reactions in flow:overcoming the challenges of clogging via acoustic irradiation[J]. Chemical Science, 2011, 2(2):287-290. |
[70] | HORIE T, SUMINO M, TANAKA T, et al. Photodimerization of maleic anhydride in a microreactor without clogging[J]. Organic Process Research & Development, 2010, 14(2):405-410. |
[71] | CASTRO F, KUHN S, JENSEN K, et al. Process intensification and optimization for hydroxyapatite nanoparticles production[J]. Chem. Eng. Sci., 2013, 100:352-359. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[5] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[6] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[7] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[8] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[9] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[10] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[11] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[12] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[13] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[14] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[15] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 363
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||