CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1539-1548.DOI: 10.11949/0438-1157.20221565
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hao WANG1(), Siyang TANG1, Shan ZHONG1, Bin LIANG1,2()
Received:
2022-12-05
Revised:
2023-04-10
Online:
2023-06-02
Published:
2023-04-05
Contact:
Bin LIANG
通讯作者:
梁斌
作者简介:
王皓(1998—),男,硕士研究生,wanghaoscusce@qq.com
基金资助:
CLC Number:
Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution[J]. CIESC Journal, 2023, 74(4): 1539-1548.
王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548.
时间/s | 标准差 | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 |
300 | 0 | 3.35×10-3 | 1.38×10-3 | 1.84×10-3 | 2.88×10-3 |
600 | 1.61×10-3 | 3.25×10-3 | 2.31×10-3 | 2.39×10-3 | 0.80×10-3 |
900 | 3.35×10-3 | 3.50×10-3 | 2.80×10-3 | 1.84×10-3 | 0 |
1200 | 0.93×10-3 | 3.04×10-3 | 2.01×10-3 | 1.66×10-3 | 2.3×10-3 |
1800 | 4.26×10-3 | 0.80×10-3 | 1.22×10-3 | 2.39×10-3 | 2.01×10-3 |
2400 | 0.57×10-3 | 3.34×10-3 | 1.13×10-3 | 3.60×10-3 | 0 |
Table 1 Standard deviation of CO2 loading
时间/s | 标准差 | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 | 3.59×10-3 |
300 | 0 | 3.35×10-3 | 1.38×10-3 | 1.84×10-3 | 2.88×10-3 |
600 | 1.61×10-3 | 3.25×10-3 | 2.31×10-3 | 2.39×10-3 | 0.80×10-3 |
900 | 3.35×10-3 | 3.50×10-3 | 2.80×10-3 | 1.84×10-3 | 0 |
1200 | 0.93×10-3 | 3.04×10-3 | 2.01×10-3 | 1.66×10-3 | 2.3×10-3 |
1800 | 4.26×10-3 | 0.80×10-3 | 1.22×10-3 | 2.39×10-3 | 2.01×10-3 |
2400 | 0.57×10-3 | 3.34×10-3 | 1.13×10-3 | 3.60×10-3 | 0 |
时间/s | 相对偏差/% | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0~300 | 4.2 | 0.1 | 7.1 | 3.0 | 9.0 |
300~600 | 6.4 | 5.6 | 3.0 | 5.2 | 4.0 |
600~900 | 8.5 | 10.3 | 7.9 | 7.6 | 3.1 |
900~1200 | 1.9 | 1.5 | 7.8 | 3.3 | 0.9 |
1200~1800 | 4.7 | 5.7 | 12.0 | 11.0 | 15.6 |
1800~2400 | 0.5 | 0.1 | 2.1 | 9.8 | 11.0 |
平均值 | 4.4 | 3.9 | 6.7 | 6.7 | 7.2 |
Table 2 Relative deviation of mass balance
时间/s | 相对偏差/% | ||||
---|---|---|---|---|---|
HZSM-5-25 | HZSM-5-50 | HZSM-5-80 | AC | Blank | |
0~300 | 4.2 | 0.1 | 7.1 | 3.0 | 9.0 |
300~600 | 6.4 | 5.6 | 3.0 | 5.2 | 4.0 |
600~900 | 8.5 | 10.3 | 7.9 | 7.6 | 3.1 |
900~1200 | 1.9 | 1.5 | 7.8 | 3.3 | 0.9 |
1200~1800 | 4.7 | 5.7 | 12.0 | 11.0 | 15.6 |
1800~2400 | 0.5 | 0.1 | 2.1 | 9.8 | 11.0 |
平均值 | 4.4 | 3.9 | 6.7 | 6.7 | 7.2 |
颗粒 | 平均解吸速率/(mmol/min) | 促进效果/% |
---|---|---|
HZSM-5-25 | 9.522 | 15.75 |
HZSM-5-50 | 9.299 | 13.04 |
HZSM-5-80 | 9.000 | 9.41 |
AC | 8.358 | 1.60 |
Blank | 8.226 | — |
Table 3 Average desorption rates in heating section
颗粒 | 平均解吸速率/(mmol/min) | 促进效果/% |
---|---|---|
HZSM-5-25 | 9.522 | 15.75 |
HZSM-5-50 | 9.299 | 13.04 |
HZSM-5-80 | 9.000 | 9.41 |
AC | 8.358 | 1.60 |
Blank | 8.226 | — |
颗粒 | 平均 解吸速率/(mmol/min) | CO2平衡 浓度/ (mol/L) | CO2实际 浓度/ (mol/L) | 过饱 和度 | 促进 效果/% |
---|---|---|---|---|---|
HZSM-5-25 | 8.7371 | 0.0016 | 0.0188 | 10.72 | 2.20 |
HZSM-5-50 | 8.7770 | 0.0016 | 0.0188 | 10.72 | 2.67 |
HZSM-5-80 | 8.6973 | 0.00159 | 0.0209 | 12.15 | 1.74 |
AC | 8.6861 | 0.00159 | 0.0212 | 12.35 | 1.61 |
Blank | 8.5487 | 0.00157 | 0.0272 | 16.37 | — |
Table 4 Average desorption rate of constant temperature section
颗粒 | 平均 解吸速率/(mmol/min) | CO2平衡 浓度/ (mol/L) | CO2实际 浓度/ (mol/L) | 过饱 和度 | 促进 效果/% |
---|---|---|---|---|---|
HZSM-5-25 | 8.7371 | 0.0016 | 0.0188 | 10.72 | 2.20 |
HZSM-5-50 | 8.7770 | 0.0016 | 0.0188 | 10.72 | 2.67 |
HZSM-5-80 | 8.6973 | 0.00159 | 0.0209 | 12.15 | 1.74 |
AC | 8.6861 | 0.00159 | 0.0212 | 12.35 | 1.61 |
Blank | 8.5487 | 0.00157 | 0.0272 | 16.37 | — |
名称 | 富液CO2负载量/(mol/mol) | 解吸温度/℃ | 平均解吸速率/ (mmol/min) | |
---|---|---|---|---|
Blank1 | 0.4998 | 91~92 | 6.790① | 6.107② |
Blank2 | 0.4886 | 91~92 | 6.714① | 6.107② |
HZSM-5-25 | 0.4886 | 91~92 | 6.763① | 6.136② |
Table 5 Effect of heat transfer area and particles on desorption rate
名称 | 富液CO2负载量/(mol/mol) | 解吸温度/℃ | 平均解吸速率/ (mmol/min) | |
---|---|---|---|---|
Blank1 | 0.4998 | 91~92 | 6.790① | 6.107② |
Blank2 | 0.4886 | 91~92 | 6.714① | 6.107② |
HZSM-5-25 | 0.4886 | 91~92 | 6.763① | 6.136② |
1 | Jung J, Jeong Y S, Lee U, et al. New configuration of the CO2 capture process using aqueous monoethanolamine for coal-fired power plants[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3865-3878. |
2 | Liang Z W, Fu K Y, Idem R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288. |
3 | Abu-Zahra M R M, Schneiders L H J, Niederer J P M, et al. CO2 capture from power plants[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 37-46. |
4 | Li K K, Cousins A, Yu H, et al. Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement[J]. Energy Science & Engineering, 2016, 4(1): 23-39. |
5 | Li X F, Wang S J, Chen C H. Experimental and rate-based modeling study of CO2 capture by aqueous monoethanolamine[J]. Greenhouse Gases: Science and Technology, 2014, 4(4): 495-508. |
6 | Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654. |
7 | Idem R, Shi H C, Gelowitz D, et al. Catalytic method and apparatus for separating a gaseous component from an incoming gas stream: US9586175[P]. 2017-03-07. |
8 | Shi H C, Naami A, Idem R, et al. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. International Journal of Greenhouse Gas Control, 2014, 26: 39-50. |
9 | Liang Z W, Idem R, Tontiwachwuthikul P, et al. Experimental study on the solvent regeneration of a CO2-loaded MEA solution using single and hybrid solid acid catalysts[J]. AIChE Journal, 2016, 62(3): 753-765. |
10 | Zhang X W, Zhang R, Liu H L, et al. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts[J]. Applied Energy, 2018, 218: 417-429. |
11 | Zhang X W, Liu H L, Liang Z W, et al. Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts[J]. Applied Energy, 2018, 229: 562-576. |
12 | Zhang X W, Huang Y F, Gao H X, et al. Zeolite catalyst-aided tri-solvent blend amine regeneration: an alternative pathway to reduce the energy consumption in amine-based CO2 capture process[J]. Applied Energy, 2019, 240: 827-841. |
13 | Prasongthum N, Natewong P, Reubroycharoen P, et al. Solvent regeneration of a CO2-loaded BEA-AMP bi-blend amine solvent with the aid of a solid Brønsted Ce(SO4)2/ZrO2 superacid catalyst[J]. Energy & Fuels, 2019, 33(2): 1334-1343. |
14 | Gao H X, Huang Y F, Zhang X W, et al. Catalytic performance and mechanism of S O 4 2 - /ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution[J]. Applied Energy, 2020, 259: 114179. |
15 | Huang Y F, Zhang X W, Luo X, et al. Catalytic performance and mechanism of meso-microporous material β-SBA-15-supported FeZr catalysts for CO2 desorption in CO2-loaded aqueous amine solution[J]. Industrial & Engineering Chemistry Research, 2021, 60(6): 2698-2709. |
16 | Liu H L, Zhang X, Gao H X, et al. Investigation of CO2 regeneration in single and blended amine solvents with and without catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7656-7664. |
17 | Zhang X W, Hong J L, Liu H L, et al. S O 4 2 - /ZrO2 supported on γ-Al2O3 as a catalyst for CO2 desorption from CO2-loaded monoethanolamine solutions[J]. AIChE Journal, 2018, 64(11): 3988-4001. |
18 | Bhatti U H, Shah A K, Kim J N, et al. Effects of transition metal oxide catalysts on MEA solvent regeneration for the post-combustion carbon capture process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5862-5868. |
19 | Bairq Z A S, Gao H X, Murshed F A M, et al. Modified heterogeneous catalyst-aided regeneration of CO2 capture amines: a promising perspective for a drastic reduction in energy consumption[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9526-9536. |
20 | Wang T, Yu W, Liu F, et al. Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7830-7838. |
21 | Zhang J F, Qiao Y, Agar D W. Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture[J]. Chemical Engineering Research and Design, 2012, 90(6): 743-749. |
22 | Liu M L, Tang S Y, Ma K, et al. On the role of solid particles in CO2 bubble nucleation for solvent regeneration of MEA-based CO2 capture technology[J]. Greenhouse Gases: Science and Technology, 2019, 9(3): 553-566. |
23 | Jamal A, Meisen A, Lim C J. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor (Ⅰ): Experimental apparatus and mathematical modeling[J]. Chemical Engineering Science, 2006, 61(19): 6571-6589. |
24 | Jamal A, Meisen A, Lim C J. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor (Ⅱ): Experimental results and parameter estimation[J]. Chemical Engineering Science, 2006, 61(19): 6590-6603. |
25 | Monteiro J G M S, Svendsen H F. The N2O analogy in the CO2 capture context: literature review and thermodynamic modelling considerations[J]. Chemical Engineering Science, 2015, 126: 455-470. |
26 | Hartono A, Mba E O, Svendsen H F. Prediction of N2O solubility in alkanolamine solutions from the excess volume property[J]. Energy Procedia, 2013, 37: 1744-1750. |
27 | Hartono A, Mba E O, Svendsen H F. Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA)[J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1808-1816. |
28 | Youn J R, Suh N P. Processing of microcellular polyester composites[J]. Polymer Composites, 1985, 6(3): 175-180. |
29 | Malila J, Hyvärinen A P, Viisanen Y, et al. Displacement barrier heights from experimental nucleation rate data[J]. Atmospheric Research, 2008, 90(2/3/4): 303-312. |
30 | Wilt P M. Nucleation rates and bubble stability in water-carbon dioxide solutions[J]. Journal of Colloid and Interface Science, 1986, 112(2): 530-538. |
31 | Jones S F, Evans G M, Galvin K P. Bubble nucleation from gas cavities—a review[J]. Advances in Colloid and Interface Science, 1999, 80(1): 27-50. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 368
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||