[1] |
KAIZAWA A, MARUOKA N, KAWAI A, et al. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system[J]. Heat and Mass Transfer, 2008, 44(7):763-769.
|
[2] |
SOLÉ A, NEUMANN H, NIEDERMAIER S, et al. Stability of sugar alcohols as PCM for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 126(11):125-134.
|
[3] |
WANG W, HE S, GUO S, et al. A combined experimental and simulation study on charging process of erythritol-HTO direct-blending based energy storage system[J]. Energy Conversion and Management, 2014, 83:306-313.
|
[4] |
AGYENIM F, EAMES P, SMYTH M. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system[J]. Renewable Energy, 2011, 36(1):108-117.
|
[5] |
HÖHLEIN S, KÖNIG-HAAGEN A, BRÜGGEMANN D. Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES)[J]. Materials, 2017, 10(4):444.
|
[6] |
WANG Y, WANG L, XIE N, et al. Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit[J]. International Journal of Heat and Mass Transfer, 2016, 99:770-781.
|
[7] |
SHIN H K, RHEE K Y, PARK S J. Effects of exfoliated graphite on the thermal properties of erythritol-based composites used as phase-change materials[J]. Composites Part B:Engineering, 2016, 96:350-353.
|
[8] |
GAO L, ZHAO J, AN Q, et al. Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied Thermal Engineering, 2017, 113:858-866.
|
[9] |
NOMURA T, OKINAKA N, AKIYAMA T. Impregnation of porous material with phase change material for thermal energy storage[J]. Materials Chemistry and Physics, 2009, 115(2):846-850.
|
[10] |
ZHANG H, DUQUESNE M, GODIN A, et al. Experimental and in silico characterization of xylitol as seasonal heat storage material[J]. Fluid Phase Equilibria, 2016, 436:55-68.
|
[11] |
JORGENSEN W L, AND D S M, TIRADORIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45):11225-11236.
|
[12] |
WANG J, WOLF R M, CALDWELL J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004, 25(9):1157-1174.
|
[13] |
BROOKS B R, BROOKS C L, MACKERELL A D, et al. CHARMM:The biomolecular simulation program[J]. Journal of Computational Chemistry, 2009, 30(10):1545-1614.
|
[14] |
INAGAKI T, ISHIDA T. Computational analysis of sugar alcohols as phase-change material:insight into the molecular mechanism of thermal energy storage[J]. Journal of Physical Chemistry C, 2016, 120(15):7903-7915.
|
[15] |
CALDWELL J W, ROSS W R, CHEATHAM Ⅲ T E, et al. AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules[J]. Computer Physics Communications, 1995, 91:1-41.
|
[16] |
SASTRI S R S, RAO K K. A new temperature-thermal conductivity relationship for predicting saturated liquid thermal conductivity[J]. Chemical Engineering Journal, 1999, 74(3):161-169.
|
[17] |
MATSUBARA H, KIKUGAWA G, BESSHO T, et al. Molecular dynamics study on the role of hydroxyl groups in heat conduction in liquid alcohols[J]. International Journal of Heat and Mass Transfer, 2017, 108:749-759.
|
[18] |
朱宇, 陆小华, 丁皓, 等. 分子模拟在化工应用中的若干问题及思考[J]. 化工学报, 2004, 55(8):1213-1223. ZHU Y, LU X H, DING H, et al. Molecular simulation in chemical engineering[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(8):1213-1223.
|
[19] |
陈占秀, 陈冠益, 王艳, 等. 丙三醇与1, 6-己二醇混合物降温凝固过程的分子动力学模拟[J]. 化工学报, 2013, 64(7):2316-2321. CHEN Z X, CHEN G Y, WANG Y, et al. Molecular dynamics simulation of solidification process for mixtures of glycerol and 1, 6-hexanediol[J]. CIESC Journal, 2013, 64(7):2316-2321.
|
[20] |
HORTA B A C, FUCHS P F J, VAN GUNSTEREN W F, et al. New interaction parameters for oxygen compounds in the GROMOS force field:improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters[J]. Journal of Chemical Theory and Computation, 2011, 7(4):1016-1031.
|
[21] |
SCHMID N, EICHENBERGER A P, CHOUTKO A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7[J]. European Biophysics Journal, 2011, 40(7):843-856.
|
[22] |
BATISTA M L S, PE?REZ-SA?NCHEZ G, GOMES J R B, et al. Evaluation of the GROMOS 56ACARBO force field for the calculation of structural, volumetric, and dynamic properties of aqueous glucose systems[J]. Journal of Physical Chemistry B, 2015, 119(49):15310-15319.
|
[23] |
SHIMADA A. Crystal structure and lattice energy of i-erythritol. (Ⅰ):Crystal structure of i-erythritol[J]. Bulletin of the Chemical Society of Japan, 1959, 32(4):325-329.
|
[24] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.
|
[25] |
ZHANG Y, MAGINN E J. A comparison of methods for melting point calculation using molecular dynamics simulations[J]. Journal of Chemical Physics, 2012, 136(14):144116.
|
[26] |
WATT S W, CHISHOLM J A, JONES W, et al. A molecular dynamics simulation of the melting points and glass transition temperatures of myo-and neo-inositol[J]. Journal of Chemical Physics, 2004, 121(19):9565-9573.
|
[27] |
徐上, 赵伶玲, 蔡庄立, 等. 二维氮化铝材料传热性能的模拟研究[J]. 化工学报, 2017, 68(9):3321-3327. XU S, ZHAO L L, CAI Z L, et al. Modeling study on thermal conductivity of two-dimensional hexagonal aluminum nitride aluminum nitride[J]. CIESC Journal, 2017, 68(9):3321-3327.
|
[28] |
WIRNSBERGER P, FRENKEL D, DELLAGO C. An enhanced version of the heat exchange algorithm with excellent energy conservation properties[J]. Journal of Chemical Physics, 2015, 143(12):124104.
|
[29] |
HAFSKJOLD B, IKESHOJI T, RATKJE S K. On the molecular mechanism of thermal diffusion in liquids[J]. Molecular Physics, 1993, 80(6):1389-1412.
|
[30] |
SCHELLING P K, PHILLPOT S R, KEBLINSKI P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14):144306.
|