CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 2880-2888.DOI: 10.11949/0438-1157.20230076

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures

Haopeng SHI1,2(), Dawen ZHONG1(), Xuexin LIAN1, Junfeng ZHANG1   

  1. 1.Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206, China
    2.School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-02-03 Revised:2023-06-29 Online:2023-08-31 Published:2023-07-05
  • Contact: Dawen ZHONG


史昊鹏1,2(), 钟达文1(), 廉学新1, 张君峰1   

  1. 1.华北电力大学北京市非能动核能安全技术重点实验室,北京 102206
    2.上海交通大学核科学与工程学院,上海 200240
  • 通讯作者: 钟达文
  • 作者简介:史昊鹏(1997—),男,硕士研究生,
  • 基金资助:


External pressure vessel cooling (ERVC) technology, as a technical means to achieve in-reactor melt retention (IVR) in nuclear reactors, needs to achieve higher heat transfer rates. This study used heated plate surfaces with different downward orientations to simulate the boiling heat transfer during ERVC process on the local area of the outer reactor pressure vessel (RPV) lower head, and the advanced additive manufacturing of cold spraying (CS-AM) was applied to directly fabricate multiscale groove-fin arrays on the heated surfaces. After going through downward-facing critical pool boiling experiments in the environment of atmosphere and saturated water, the boiling curves were obtained and compared with bare surface to evaluate the performance of enhancing boiling heat transfer. The results indicated that the mulitscale structured surfaces not only had excellent critical heat flux (CHF)-enhancing ability with more than 60% CHF increase over the bare surface, but also had better boiling heat transfer coefficient (BHTC) performance. In terms of thermal characteristics, the positive impact of the synergistic effect of multiscale structures on CHF was fully reflected. Significantly, this work provided an important basis for the application of CS-AM technology in the field of ERVC.

Key words: phase change, heat transfer, multiscale, enhanced boiling, cold spraying & additive manufacturing, critical heat flux, boiling heat transfer coefficient



关键词: 相变, 传热, 多尺度, 强化沸腾, 冷喷涂增材制造技术, 临界热通量, 沸腾传热系数

CLC Number: