[1] |
GAO P, GRATZEL M, NAZEERUDDIN M K. Organohalide lead perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7(8):2448-2463.
|
[2] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051.
|
[3] |
HODES G. Perovskite-based solar cells[J]. Science, 2013, 342(6156):317-318.
|
[4] |
LEE S W, KIM S, BAE S, et al. UV degradation and recovery of perovskite solar cells[J]. Scientific Reports, 2016, 6:38150.
|
[5] |
ETGAR L, GAO P, XUE Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134(42):17396-17399.
|
[6] |
IM J H, LEE C R, LEE J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10):4088-4093.
|
[7] |
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647.
|
[8] |
WERNER J, WENG C H, WALTER A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2[J]. The Journal of Physical Chemistry Letters, 2016, 7(1):161-166.
|
[9] |
YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intra-molecular exchange[J]. Science, 2015, 348(6240):1234-1237.
|
[10] |
NREL. Efficiency chart[EB/OL].[2017-04-14]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
|
[11] |
BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319.
|
[12] |
LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398.
|
[13] |
CHEN Q, ZHOU H, HONG Z, et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. Journal of the American Chemical Society, 2014, 136(2):622-625.
|
[14] |
WU Y, ISLAM A, YANG X, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7(9):2934-2938.
|
[15] |
VERLET L. Computer "experiments" on classical fluids (Ⅰ):Thermody-namical properties of Lennard-Jones molecules[J]. Physical Review, 1967, 159(1):98.
|
[16] |
OMINGUES G, VOLZ S, JOULAIN K, et al. Heat transfer between two nanoparticles through near field interaction[J]. Physical Review Letters, 2005, 94(8):085901.
|
[17] |
MATTONI A, FILIPPETTI A, SABA M I, et al. Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics:the role of temperature[J]. The Journal of Physical Chemistry C, 2015, 119(30):17421-17428.
|
[18] |
MATSUI M, AKAOGI M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2[J]. Molecular Simulation, 1991, 6(4/5/6):239-244.
|
[19] |
LI P, ROBERTS B P, CHAKRAVORTY D K, et al. Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent[J]. Journal of Chemical Theory and Computation, 2013, 9(6):2733-2748.
|
[20] |
MCDONALD N A, DUFFY E M, JORGENSEN W L. Monte Carlo investigations of selective anion complexation by a bis (phenylurea) p-tert-butylcalix
|
[4] |
arene[J]. Journal of the American Chemical Society, 1998, 120(20):5104-5111.
|
[21] |
RAPP A K, CASEWIT C J, COLWELL K, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25):10024-10035.
|
[22] |
NOS S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1):511-519.
|
[23] |
HOOVER W G. Canonical dynamics:equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3):1695-1697.
|
[24] |
DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald:an N·log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12):10089-10092.
|
[25] |
AKTULGA H M, FOGARTY J C, PANDIT S A, et al. Parallel reactive molecular dynamics:numerical methods and algorithmic techniques[J]. Parallel Computing, 2012, 38(4):245-259.
|
[26] |
FRENKEL D, SMIT B. Understanding molecular simulation second edition from algorithms to applications computational science series vol 1[M]//Understanding Molecular Simulation:From Algorithms to Applications. San Francisco, Academic Press, Inc. 2001:66.
|
[27] |
TREACY M J, EBBESEN T, GIBSON J. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(6584):678-695.
|
[28] |
HUMPHREY W, DALKE A, SCHULTEN K. VMD:visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1):33-38.
|
[29] |
WELLER M T, WEBER O J, HENRY P F, et al. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K[J]. Chemical Communications, 2015, 51(20):4180-4183.
|
[30] |
RAKITA Y, COHEN S R, KEDEM N K, et al. Mechanical properties of APbX3 (A=Cs or CH3NH3; X=I or Br) perovskite single crystals[J]. MRS Communications, 2015, 5(4):623-629.
|