[1] |
KOTIK M, ARCHELAS A, WOHLGEMUTH R. Epoxide hydrolases and their application in organic synthesis[J]. Current Organic Chemistry, 2012, 16(4):451-482.
|
[2] |
SAINI P, SAREEN D. An overview on the enhancement of enantioselectivity and stability of microbial epoxide hydrolases[J]. Molecular Biotechnology, 2017, 59:98-116.
|
[3] |
SIMEO Y, FABER K. Selectivity enhancement of enantio-and stereo-complementary epoxide hydrolases and chemo-enzymatic deracemization of (±)-2-methylglycidyl benzyl ether[J]. Tetrahedron:Asymmetry, 2006, 17(3):402-409.
|
[4] |
XU Y, JIA X, PANKE S, et al. Asymmetric dihydroxylation of aryl olefins by sequential enantioselective epoxidation and regioselective hydrolysis with tandem biocatalysts[J]. Chemical Communications, 2009, (12):1481-1483.
|
[5] |
WU Y W, KONG X D, ZHU Q Q, et al. Chemoenzymatic enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol by a newly cloned epoxide hydrolase VrEH2 from Vigna radiata[J]. Catalysis Communications, 2015, 58:16-20.
|
[6] |
CARLSSON A J, BAUER P, MA H, et al. Obtaining optical purity for product diols in enzyme-catalyzed epoxide hydrolysis:contributions from changes in both enantio-and regioselectivity[J]. Biochemistry, 2012, 51(38):7627-7637.
|
[7] |
SELTZMAN H H. Recent CB1 cannabinoid receptor antagonists and inverse agonists[J]. Drug Development Research, 2009, 70(8):601-615.
|
[8] |
吴燕雯. 绿豆环氧化物水解酶VrEH2催化性质研究及分子改造的初步探索[D]. 上海:华东理工大学, 2015. WU Y W. Studies on the catalytic properties of epoxide hydrolase 2 from Vigna radiata (VrEH2) and its preliminary molecular modification[D]. Shanghai:East China University of Science and Technology, 2015.
|
[9] |
SURESH P, SRIMURUGAN S, DERE R T, et al. Synthesis of new binol based[1+1] macrocyclic chiral manganese (Ⅲ) Schiff bases as catalysts for asymmetric epoxidation[J]. Tetrahedron:Asymmetry, 2013, 24(11):669-676.
|
[10] |
KARBOUNE S, ARCHELAS A, BARATTI J C. Free and immobilized Aspergillus niger epoxide hydrolase-catalyzed hydrolytic kinetic resolution of racemic p-chlorostyrene oxide in a neat organic solvent medium[J]. Process Biochemistry, 2010, 45(2):210-216.
|
[11] |
叶慧华, 胡蝶, 李闯, 等. 新型菜豆环氧化物水解酶的异源表达及对映归一性催化特性[J]. 中国生物工程杂志, 2016, 36(10):21-27. YE H H, HU D, LI C, et al. Expression of a novel epoxide hydrolase from Phaseolus vulgaris and its enantioconvergent catalytic performance[J]. China Biotechnology, 2016, 36(10):21-27.
|
[12] |
YE H H, HU D, SHI X L, et al. Directed modification of a novel epoxide hydrolase from Phaseolus vulgaris to improve its enantioconvergence towards styrene epoxides[J]. Catalysis Communications, 2016, 87:32-35.
|
[13] |
ROBERT X, GOUET P. Deciphering key features in protein structures with the new ENDscript server[J]. Nucleic Acids Research, 2014, 42(W1):W320-W324.
|
[14] |
BIASINI M, BIENERT S, WATERHOUSE A, et al. SWISS-MODEL:modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research, 2014, 42(W1):W252-W258.
|
[15] |
BERTONI M, KIEFER F, BIASINI M, et al. Modeling protein quaternary structure of homo-and hetero-oligomers beyond binary interactions by homology[J]. Scientific Reports, 2017, 7(1):10480.
|
[16] |
KONG X D, MA Q, ZHOU J, et al. A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-β-blocker precursors[J]. Angewandte Chemie, 2014, 126(26):6759-6762.
|
[17] |
CHEN C S, FUJIMOTO Y, GIRDAUKAS G, et al. Quantitative analyses of biochemical kinetic resolutions of enantiomers[J]. Journal of the American Chemical Society, 1982, 104(25):7294-7299.
|
[18] |
BAUER P, CARLSSON A J, AMREIN B A, et al. Conformational diversity and enantioconvergence in potato epoxide hydrolase[J]. Organic & Biomolecular Chemistry, 2016, 14(24):5639-5651.
|
[19] |
MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4:automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16):2785-2791.
|
[20] |
HUEY R, MORRIS G M, OLSON A J, et al. A semiempirical free energy force field with charge-based desolvation[J]. Journal of Computational Chemistry, 2007, 28(6):1145-1152.
|
[21] |
ABRAHAM M J, MURTOLA T, SCHULZ R, et al. GROMACS:high performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1/2:19-25.
|
[22] |
PALL S, ABRAHAM M J, KUTZNER C, et al. Tackling exascale software challenges in molecular dynamics simulations with GROMACS[C]//International Conference on Exascale Applications and Software. Springer, Cham, 2014:3-27.
|
[23] |
PRONK S, PALL S, SCHULZ R, et al. GROMACS 4.5:a high-throughput and highly parallel open source molecular simulation toolkit[J]. Bioinformatics, 2013, 29(7):845-854.
|
[24] |
HWANG S, CHOI C Y, LEE E Y. One-pot biotransformation of racemic styrene oxide into (R)-1,2-phenylethandiol by two recombinant microbial epoxide hydrolases[J]. Biotechnology and Bioprocess Engineering, 2008, 13(4):453-457.
|
[25] |
MONTERDE M I, LOMBARD M, ARCHELAS A, et al. Enzymatic transformations(Part 58):Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase[J]. Tetrahedron:Asymmetry, 2004, 15(18):2801-2805.
|
[26] |
LINDBERG D, DE LA FUENTE REVENGA M, WIDERSTEN M. Temperature and pH dependence of enzyme-catalyzed hydrolysis of trans-methylstyrene oxide. A unifying kinetic model for observed hysteresis, cooperativity, and regioselectivity[J]. Biochemistry, 2010, 49(10):2297-2304.
|
[27] |
TOKURIKI N, TAWFIK D S. Protein dynamism and evolvability[J]. Science, 2009, 324(5924):203-207.
|
[28] |
BRUICE T C. A view at the millennium:the efficiency of enzymatic catalysis[J]. Accounts of Chemical Research, 2002, 35(3):139-148.
|
[29] |
REETZ M T, BOCOLA M, WANG L W, et al. Directed evolution of an enantioselective epoxide hydrolase:uncovering the source of enantioselectivity at each evolutionary stage[J]. Journal of the American Chemical Society, 2009, 131(21):7334-7343.
|