CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4530-4541.DOI: 10.11949/j.issn.0438-1157.20180514
Previous Articles Next Articles
BAO Bo1, ZHAO Shuangliang1, XU Jianhong2
Received:
2018-05-15
Revised:
2018-07-09
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China (21808056).
鲍博1, 赵双良1, 徐建鸿2
通讯作者:
鲍博
基金资助:
国家自然科学基金项目(21808056)。
CLC Number:
BAO Bo, ZHAO Shuangliang, XU Jianhong. Progress in studying fluid phase behaviours with micro-and nano-fluidic technology[J]. CIESC Journal, 2018, 69(11): 4530-4541.
鲍博, 赵双良, 徐建鸿. 基于微纳流控技术的流体相态特性研究进展[J]. 化工学报, 2018, 69(11): 4530-4541.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180514
[1] | LI L, ISMAGILOV R F. Protein crystallization using microfluidic technologies based on valves, droplets, and slipchip[J]. Ann. Rev. Biophys., 2010, 39:139-158. |
[2] | BATE F S. Polymer-polymer phase behavior[J]. Science, 1991, 251(4996):898-905. |
[3] | KAMAL M S, HUSSEIN I A, SULTAN A S. Review on surfactant flooding:phase behavior, retention, IFT, and field applications[J]. Energy & Fuels, 2017, 31:7701-7720. |
[4] | LEFEBVRE S, CHAOUKI J, GUY C. Phase mixing modeling in multiphase reactors containing gas bubble:a review[J]. International Journal of Chemical Reactor Engineering, 2004, 2:R2. |
[5] | BARKER R, HUA Y, NEVILLE A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review[J]. International Materials Review, 2017, 62(1):1-31. |
[6] | MARRE S, ROIG Y, AYMONIER C. Supercritical microfluidics:Oppurtunities in flow-through chemistry and materials science[J]. The Journal of Supercritical Fluids, 2012, 66:251-264. |
[7] | BAO B, RIORDON J, SINTON D, et al. Microfluidic and nanofluidic phase behaviour characterization for industrial CO2, oil and gas[J]. Lab on a Chip, 2017, 17:2740-2759. |
[8] | PEDERSEN K S, CHRISTENSEN P L, SHAIKH J A. Phase Behavior of Petroleum Reservoir Fluids[M]. New York:Taylor& Francis Group, CRC Press, 2007:53-59. |
[9] | GONG M M, SINTON D. Turning the page:advancing paper-based microfluidics for broad diagnostic application[J]. Chemical Reviews, 2017, 117(12):8447-8480. |
[10] | ZARE R N, KIM S. Microfluidic platforms for single-cell analysis[J]. Annual Review of Biomedical Engineering, 2010, 12:187-201. |
[11] | CHOI J R, SONG H, SUNG J H, et al. Microfluidic assay-based optical measurement techniques for cell analysis:a review of recent progress[J]. Biosensors & Bioelectronics, 2016, 77:227-236. |
[12] | RAN R, SUN Q, BABY T, et al. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications[J]. Chemical Engineering Science, 2017, 169:78-96. |
[13] | DUAN C, WANG W, XIE Q, et al. Review article:fabrication of nanofluidic devices[J]. Biomicrofluidics, 2013, 7(2):026501. |
[14] | ANBARI A, CHIEN H T, DATTA S, et al. Microfluidic model porous media:fabrication and applications[J]. Small, 2018, 14:1703575-1. |
[15] | FIORINI G S, CHIU D T. Disposable microfluidic devices:fabrication, function and application[J]. BioTechniques, 2005, 38(3):429-446. |
[16] | HE Y, WU Y, FU J Z, et al. Fabrication of paper-based microfluidic analysis devices:a review[J]. RSC Advances, 2015, 5:78109-78127. |
[17] | NGUYEN P, MOHADDES D, RIORDON J, et al. Fast fluorescence-based micro fluidic method for measuring minimum miscibility pressure of CO2 in crude oils[J]. Anal. Chem., 2015, 87(6):3160-3164. |
[18] | ZHENG B, TICE J D, ROACH L S, et al. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction[J]. Angew. Chemie. Int. Ed., 2004, 43(19):2508-2511. |
[19] | TOGO M, MAEDA T, ITO A, et al. Measurement and correlation of phase equilibria for (water+aromatic hydrocarbon) binary mixtures at T=(573 to 623) K using microfluidic mixing[J]. J. Chem. Thermodyn., 2013, 67:247-252. |
[20] | MOSTOWFI F, MOLLA S, TABELING P. Determining phase diagrams of gas-liquid systems using a microfluidic PVT[J]. Lab on a Chip, 2012, 12(21):4381-4387. |
[21] | BAO B, RIORDON J, XU Y, et al. Direct measurement of the fluid phase diagram[J]. Anal. Chem., 2016, 88(14):6986-6989. |
[22] | XU Y, RIORDON J, CHENG X, et al.The full pressure-temperature phase envelope of a mixture in 1000 microfluidic chambers[J]. Angew. Chemie. Int. Ed., 2017, 129(45):14150-14155. |
[23] | SONG W, FADAEI H, SINTON D. Determination of dew point conditions for CO2 with impurities using micro fluidics[J]. Environ. Sci. Technol., 2014, 48(6):3567-3574. |
[24] | ALLY J, MOLLA S, MOSTOWFI F. Condensation in nanoporous packed beds[J]. Langmuir, 2016, 32(18):4494-4499. |
[25] | KIM M, SELL A, SINTON D. Aquifer-on-a-chip:understanding pore-scale salt precipitation dynamics during CO2 sequestration[J]. Lab on a Chip, 2013, 13(13):2508-2518. |
[26] | BAO B, ZANDAVI S H, LI H, et al. Bubble nucleation and growth in nanochannels[J]. Phys. Chem. Chem. Phys., 2017, 19(12):8223-8229. |
[27] | ALFI M, NASRABADI H, BANERJEE D. Experimental investigation of confinement effect on phase behavior of hexane, heptane and octane using lab-on-a-chip technology[J]. Fluid Phase Equilibia, 2016, 423:25-33. |
[28] | PARSA E, YIN X, OZKAN E. SPE 175118:Direct observation of the impact of nanopore confinement on petroleum gas condensation[J]. SPE Technical Conference & Exhibition, 2015, 36 (3):400-407. |
[29] | ZHONG J, ZANDAVI S H, LI H, et al.Condensation in one-dimensional dead-end nanochannels[J]. ACS Nano, 2016, 11(1):304-313. |
[30] | MOLLA S, MAGRO L, MOSTOWFI F. Microfluidic technique for measuring wax appearance temperature of reservoir fluids[J]. Lab on a Chip, 2016, 16(19):3795-3803. |
[31] | HANSEN C L, SKORDALAKES E, BERGER J M, et al. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(26):16531-16536. |
[32] | PINHO B, GIRARDON S, BAZER-BACHI F, et al. A microfluidic approach for investigating multicomponent systems thermodynamics at high pressures and temperatures[J]. Lab on a Chip, 2014, 14:3843-3849. |
[33] | FISHER R, SHAH M K, ESKIN D, et al.Equilibrium gas-oil ratio measurements using a microfluidic technique[J]. Lab on a Chip, 2013, 13(13):2623-2633. |
[34] | LUTHER S K, STEHLE S, WEIHS K, et al. Determination of vapor-liquid equilibrium data in microfluidic segmented flows at elevated pressures using raman spectroscopy[J]. Anal. Chem., 2015, 87(16):8165-8172. |
[35] | SCHNEIDER M H, SIEBEN V J, KHARRAT A M, et al. Measurement of asphaltenes using optical spectroscopy on a microfluidic platform[J]. Anal. Chem., 2013, 85(10):5153-5160. |
[36] | LENG J, JOANICOT M, AJDARI A. Microfluidic exploration of the phase diagram of a surfactant/water binary system[J]. Langmuir, 2007, 23(5) 2315-2317. |
[37] | LEE J, BOSE A, TRIPATHI A. Rapid exploration of phase behavior in surfactant systems using flow in microchannels[J]. Langmuir, 2006, 22(26):11412-11419. |
[38] | ZHOU X, LI J, WU C, et al. Constructing the phase diagram of an aqueous solution of poly(n-isopropyl acrylamide) by controlled microevaporation in a nanoliter microchamber[J]. Macromol. Rapid Commun., 2008, 29(16):1363-1367. |
[39] | DE HAAS T, FADAEI H, GUERRERO U, et al. Steam-on-a-chip for oil recovery:the role of alkaline additives in steam assisted gravity drainage[J]. Lab on a Chip, 2013, 13(19):3832-3839. |
[40] | CHRIMES A F, KHOSHMANESH K, STODDART P R, et al. Microfluidics and Raman microscopy:current applications and future challenges[J]. Chem. Soc. Rev., 2013, 42:5880-5906. |
[41] | GAO D, LIU H, JIANG Y, et al. Recent advances in microfluidics combined with mass spectroscopy:technologies and applications[J]. Lab on a Chip, 2013, 13:3309-3322. |
[42] | HANSEN C L, SOMMER M O A, QUAKE S R. Systematic investigation of protein phase behavior with a microfluidic formulator[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(40):14431-14436. |
[43] | ANDERSON M J, HANSEN C L, QUAKE S R. Phase knowledge enables rational screens for protein crystallization[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(45):16746-16751. |
[44] | LAU B T C, BAITZ C A, DONG X P, et al. A complete microfluidic screening platform for rational protein crystallization[J]. J. Am. Chem. Soc., 2007, 129(3):454-455. |
[45] | ZHENG B, ROACH L S, ISMAGILOV R F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets[J]. J. Am. Chem. Soc., 2003, 125(37):11170-11171. |
[46] | GERDTS C J, ELLIOTT M, LOVELL S, et al. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)[J]. Acta Crystallogr. Sect. D Biol. Crystallogr., 2008, 64(11):1116-1122. |
[47] | KHVOSTICHENKO D S, KONDRASHKINA E, PERRY S L, et al. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases[J]. Analyst, 2013, 138(18):5384-5395. |
[48] | KONINGSVELD R, STOCKMAYER W H, NIES E. Polymer Phase Diagrams:A Textbook[M]. London:Oxford University Press, 2001:102-104. |
[49] | MAO H, LI C, ZHANG Y, et al. Measuring LCSTs by novel temperature gradient methods:evidence for intermolecular interactions in mixed polymer solutions[J]. J. Am. Chem. Soc., 2003, 125(10):2850-2851. |
[50] | SHI F, HAN Z, LI J, et al. Mapping polymer phase diagram in nanoliter droplets[J]. Macromolecules, 2011, 44(4):686-689. |
[51] | SHANGGUAN Y, GUO D, FENG H, et al. Mapping phase diagrams of polymer solutions by a combination of microfluidic solution droplets and laser light-scattering detection[J]. Macromolecules, 2014, 47(7):2496-2502. |
[52] | SHIM J U, CRISTOBAL G, LINK D R, et al. Control and measurement of the phase behavior of aqueous solutions using microfluidics[J]. J. Am. Chem. Soc., 2007, 129(28):8825-8835. |
[53] | SELIMOVI? S, GOBEAUX F, FRADEN S. Mapping and manipulating temperature-concentration phase diagrams using microfluidics[J]. Lab on a Chip, 2010, 10(13):1696-1699. |
[54] | MAO H, LI C, ZHANG Y, et al. High-throughput studies of the effects of polymer structure and solution components on the phase separation of thermoresponsive polymers[J]. Macromolecules, 2004, 37(3):1031-1036. |
[55] | 张杰, 史学伟, 赵双良, 等. 水盐体系相平衡研究进展[J]. 化工学报, 2016, 67(2):379-389. ZHANG J, SHI X W, ZHAO S L, et al. Progress in study on phase equilibria of salt-water systems[J]. CIESC Journal, 2016, 67(2):379-389. |
[56] | LENG J, LONETTI B, TABELING P, et al. Microevaporators for kinetic exploration of phase diagrams[J]. Phys. Rev. Lett., 2006, 96(8):1-4. |
[57] | LAVAL P, CROMBEZ A, SALMON J B. Microfluidic droplet method for nucleation kinetics measurements[J]. Langmuir, 2009, 25(3):1836-1841. |
[58] | BLUMENSCHEIN N A, HAN D, CAGGIONI M, et al. Magnetic particles as liquid carriers in the microfluidic lab-in-tube approach to detect phase change[J]. Appl. Mater. Interfaces, 2014, 6(11):8066-8072. |
[59] | MARRE S, ADAMO A, BASAK S, et al. Design and packaging of microreactors for high pressure and high temperature applications[J]. Ind. Eng. Chem. Res., 2010, 49(22):11310-11320. |
[60] | MOLLA S, MOSTOWFI F. Microfluidic PVT-saturation pressure and phase-volume measurement of black oils[J]. SPE Reserv. Eval. Eng., 2017, 20(1):233-239. |
[61] | SULLIVAN M T, ANGELESCU D E. Microfluidic bubble point measurement using thermal nucleation[J]. Energy & Fuels, 2016, 30(4):2655-2661. |
[62] | BOWDEN S A, WILSON R, PARNELL J, et al. Determination of the asphaltene and carboxylic acid content of a heavy oil using a microfluidic device[J]. Lab on a Chip, 2009, 9(6):828-832. |
[63] | SIEBEN V J, THARANIVASAN A K, RATULOWSKI J, et al. Asphaltenes yield curve measurements on a microfluidic platform[J]. Lab on a Chip, 2015, 15(20):4062-4074. |
[64] | SIEBEN V J, THARANIVASAN A K, ANDERSEN S I, et al. Microfluidic approach for evaluating the solubility of crude oil asphaltenes[J]. Energy & Fuels, 2016, 30(3):1933-1946. |
[65] | HU C, MORRIS J E, HARTMAN R L. Microfluidic investigation of the deposition of asphaltenes in porous media[J]. Lab on a Chip, 2014, 14(12):2014-2022. |
[66] | TRAVALLONI L, CASTIER M, TAVARES F M, et al. Thermodynamic modeling of confined fluids using an extension of the generalized van der Waals theory[J]. Chem. Eng. Sci., 2010, 65(10):3088-3099. |
[67] | TAN S P, PIRI M. Equation-of-state modeling of confined-fluid phase equilibria in nanopores[J]. Fluid Phase Equilib, 2015, 393:48-63. |
[68] | DONG X, LIU H, HOU J, et al. Phase equilibria of confined fluids in nanopores of tight and shale rocks considering the effect of capillary pressure and adsorption film[J]. Ind. Eng. Chem. Res., 2016, 55(3):798-811. |
[69] | ZHAO S, HU Y, YU X, et al. Surface wettability effect on fluid transport in nanoscale slit pores[J]. AIChE J., 2017, 63(5):1704-1714. |
[70] | HU Y, YU X, TAO J, et al. Blocking effect of benzene-like fluid transport in nanoscale block-pores[J]. Mol. Simul., 2017, 7:526-533. |
[71] | HU Y, HUANG L, ZHAO S, et al. Effect of confinement in nano-porous materials on the solubility of a supercritical gas[J]. Mol. Phys., 2016, 114(22):3294-3306. |
[72] | QIAO C Z, ZHAO S L, LIU H L, et al. Fluids in porous media(Ⅳ):Quench effect on chemical potential[J]. J. Chem. Phys., 2017, 146(23):234504. |
[73] | ZHAO S L, LIU Y, CHEN X Q, et al. Unified framework of multiscale density functional theories and its recent applications[J]. Advances in Chemical Engineering, 2015, 47:1-83. |
[74] | WANG L, PARSA E, GAO Y F, et al. Experimental study and modeling of the effect of nanoconfinement on hydrocarbon phase behavior in unconventional reservoirs[C]//SPE Western North American and Rocky Mountain Joint Meeting. Denver, Colorado:Society of Petroleum Engineers, 2014:169581. |
[75] | ALFI M, BANERJEE D, NASRABADI H. Effect of confinement on the dynamic contact angle of hydrocarbons[J]. Energy & Fuels, 2016, 30(11):8962-8967. |
[76] | BRAS E J S, SOARES R R G, AZEVEDO A M, et al. A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems[J]. Journal of Chromatography A, 2017, 1515:252-259. |
[77] | COLLIER C M, WILTSHIRE M, NICHOLS J, et al. Nonlinear dual-phase multiplexing in digital microfluidic architectures[J]. Micromachines, 2011, 2(4):369-384. |
[78] | LAI K Y T, YANG Y T, LEE C Y. An intelligent digital microfluidic processor for biomedical detection[J]. Journal of Signal Processing Systems for Signal Image and Video Technology, 2015, 78(1):85-93. |
[79] | GAO J, LIU X M, CHEN T L, et al. An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation[J]. Lab on a Chip, 2013, 13(3):443-451. |
[80] | HUANG X, GUO J, WANG X, et al. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing[J]. Plos One, 2014, 9(8):e104539. |
[81] | TANG D, HUANG D, YANG Z, et al. Developmental trend of microfluidic chip and biosensor technologies and the integration mode with machine learning model and wearable device[J]. International Journal of Biomedical Engineering and Technology, 2017, 23(2/3/4):281-302. |
[82] | CHEN C P, MEHL B T, MUNSHI A S, et al. 3D-printed microfluidic devices:fabrication, advantages and limiations-a mini review[J]. Analytical Methods, 2016, 8(31):6005-6012. |
[83] | PRINA E, MISTRY P, SIDNEY L E, et al. 3D microfabricated scaffolds and microfluidic devices for ocular surface replacement:a review[J]. Stem Cell Reviews and Reports, 2017, 13(3):430-441. |
[84] | JATUKARAN A, ZHONG J, PERSAD A, et al. Direct visualization of evaporation in a two-dimensional nanoporous model for unconventional natural gas[J]. ACS Applied Nano Materials, 2018, 1:1332-1338. |
[85] | HASHAM A A, ABEDINI A, JATUKARAN A, et al. Visualization of fracturing fluid dynamics in a nanofluidic chip[J]. Journal of Petroleum Science and Engineering, 2018, 165:181-186. |
[86] | DUAN C, MAJUMDAR A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nat. Nanotechnol., 2010, 5(12):848-852. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[5] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[6] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[7] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[8] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[9] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[10] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[11] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[12] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[13] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[14] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[15] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||