[1] |
REICHENBACH T, MONDAL K, JAGER M, et al. Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts[J]. Journal of Catalysis, 2018, 360:168-174.
|
[2] |
WENZE L, PENG L, DING X, et al. CO2 hydrogenation to methanol over Cu/ZnO catalysts synthesized via a facile solid-phase grinding process using oxalic acid[J]. Korean J. Chem. Eng., 2018, 35(1):110-117.
|
[3] |
SALEHIRAD A, LATIFI S M. Effect of synthesis method on physicochemical and catalytic properties of Cu-Zn-based mesoporous nanocatalysts for water-gas shift reaction[J]. Research on Chemical Intermediates, 2017, 43(7):3633-3649.
|
[4] |
JEONG Y, KANG J Y, KIM I, et al. Preparation of Cu/ZnO catalyst using a polyol method for alcohol-assisted low temperature methanol synthesis from syngas[J]. Korean J. Chem. Eng., 2016, 33(1):114-119.
|
[5] |
陈玉萍, 蒋新, 卢建刚. 微通道反应过程对铜锌催化剂微结构的影响[J]. 化工学报, 2015, 66(10):3895-3902. CHEN Y P, JIANG X, LU J G. Effects of reaction progress in microchannel on microstructure of Cu-Zn catalyst[J]. CIESC Journal, 2015, 66(10):3895-3902.
|
[6] |
SHYAM K, PEDRO J R, JINGGUANG G C, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355:1296-1299.
|
[7] |
ZHANG B, CHEN Y, LI J, et al. High efficiency Cu-ZnO hydrogenation catalyst:the tailoring of Cu-ZnO interface sites by molecular layer deposition[J]. ACS Catalysis, 2015, 5(9):5567-5573.
|
[8] |
KULD S, THORHAUGE M, FALSIG H, et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science, 2016, 352(6288):969-974.
|
[9] |
ÁLVAREZ G C, SCHUMANN J, BEHRENS M, et al. Reverse water-gas shift reaction at the Cu/ZnO interface:influence of the Cu/Zn ratio on structure-activity correlations[J]. Applied Catalysis B:Environmental, 2016, 195:104-111.
|
[10] |
BEHRENS M, SCHLÖGL R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Z. Anorg. Allg. Chem., 2013, 639(15):2683-2695.
|
[11] |
BEMS B, SCHUR M, DASSENOY A, et al. Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chemistry-A European Journal, 2003, 9(9):2039-2052.
|
[12] |
BEHRENS M, BRENNECKE D, GIRGSDIES F, et al. Understanding the complexity of a catalyst synthesis:co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments[J]. Applied Catalysis A:General, 2011, 392(1/2):93-102.
|
[13] |
JIANG X, ZHENG L, LU J G, et al. Microstructure characters of Cu/ZnO catalyst precipitated inside microchannel reactor[J]. Journal of Molecular Catalysis A:Chemical, 2016, 423:457-462.
|
[14] |
ANGELO L, GIRLEANU M, ERSEN O, et al. Catalyst synthesis by continuous coprecipitation under micro-fluidic conditions:application to the preparation of catalysts for methanol synthesis from CO2/H2[J]. Catalysis Today, 2016, 270:59-67.
|
[15] |
MICHAEL S, BETTINA B, ALINA D, et al. Continuous coprecipitation of catalysts in a micromixer:nanostructured Cu/ZnO composite for the synthesis of methanol[J]. Angew. Chem. Int. Ed., 2013, 42:3815-3817.
|
[16] |
SIMSON G, PRASETYO E, REINER S, et al. Continuous precipitation of Cu/ZnO/Al2O3 catalysts for methanol synthesis in microstructured reactors with alternative precipitating agents[J]. Applied Catalysis A:General, 2013, 450:1-12.
|
[17] |
JIANG X, QIN X F, LING C, et al. The effect of mixing on co-precipitation and evolution of microstructure of Cu-ZnO catalyst[J]. AIChE Journal, 2018, 64(7):2647-2654.
|
[18] |
凌晨, 蒋新, 卢建刚, 等. 微通道反应过程对铜锌催化剂微结构的影响[J]. 化工学报, 2018, 69(2):718-724. LING C, JIANG X, LU J G, et al. Influence of mixing inside microreactor on microstructural evolution of Cu-ZnO catalyst[J]. CIESC Journal, 2018, 69(2):718-724.
|
[19] |
PAWE? K, KATARZYNA A-J, WIES?AW P, et al. The evaluation of synthesis route impact on structure, morphology and LT-WGS activity of Cu/ZnO/Al2O3 catalysts[J]. Catal. Lett., 2017, 147:1422-1433.
|
[20] |
ZANDER S, SEIDLHOFER B, BEHRENS M. In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates-consequences for the preparation of Cu/ZnO catalysts[J]. Dalton Transactions, 2012, 41(43):13413-13422.
|
[21] |
DAVID M W, ALI A M, JUSTIN S J H. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation:effect of precipitate ageing on catalyst activity[J]. Phys. Chem. Chem. Phys., 2002, 4:5915-5920.
|
[22] |
BALTES C, VUKOJEVIxC S, SCHÜTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. Journal of Catalysis, 2008, 258:334-344.
|
[23] |
LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures[J]. Applied Catalysis A:General, 1996, 137(1):105-117.
|
[24] |
WANG D J, TAO F R, ZHAO H H, et al. Preparation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol by CO2 assisted aging[J]. Chinese Journal of Catalysis, 2011, 32(9/10):1452-1456.
|
[25] |
JAMES G S. Lange's Handbook of Chemistry[M]. 6th ed. America:McGraw-Hill Companies, Inc., 334-352.
|
[26] |
BEHRENS M, GIRGSDIES F. Structural effects of Cu/Zn substitution in the Malachite-Rosasite system[J]. Zeitschrift für anorganische und allgemeine Chemie, 2010, 636(6):919-927.
|
[27] |
KÜHL S, FRIEDRICH M, ARMBRÜSTER M, et al. Cu, Zn, Al layered double hydroxides as precursors for copper catalysts in methanol steam reforming-pH-controlled synthesis by microemulsion technique[J]. Journal of Materials Chemistry, 2012, 22(19):9632.
|
[28] |
MIAO S, D'ALNONCOURT R N, REINECKE T, et al. A study of the influence of composition on the microstructural properties of ZnO/Al2O3 mixed oxides[J]. European Journal of Inorganic Chemistry, 2009, 2009(7):910-921.
|
[29] |
ROBINSON W, MOL J. Support effects in methanol synthesis over copper-containing catalysts[J]. Applied Catalysis, 1991, 76:117-129.
|
[30] |
FIERRO G, LO J M, INVERSI M, et al. Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction[J]. Applied Catalysis A:General, 1996, 137(2):327-348.
|
[31] |
骆广生, 王凯, 吕阳成, 等. 微尺度下非均相反应的研究进展[J]. 化工学报, 2013, 64(1):165-172. LUO G S, WANG K, LÜ Y C, et al. Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal, 2013, 64(1):165-172.
|
[32] |
陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1):63-75. CHEN G W, ZHAO Y C, LE J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1):63-75.
|