CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 780-788.DOI: 10.11949/j.issn.0438-1157.20180819
Jianyong ZHU1,2(),Xuqian ZHANG1,2,Hui YANG1,2(),Rongxiu LU1,2
Received:
2018-07-18
Revised:
2018-11-20
Online:
2019-02-05
Published:
2019-02-05
Contact:
Hui YANG
朱建勇1,2(),张旭乾1,2,杨辉1,2(),陆荣秀1,2
通讯作者:
杨辉
作者简介:
<named-content content-type="corresp-name">朱建勇</named-content>(1977—),男,博士,副教授,<email>zhujyemail@163.com</email>|杨辉(1965—),男,博士,教授,<email>yhshuo@263.net</email>
基金资助:
CLC Number:
Jianyong ZHU, Xuqian ZHANG, Hui YANG, Rongxiu LU. Soft-sensing of Pr/Nd component content under different single illumination conditions[J]. CIESC Journal, 2019, 70(2): 780-788.
朱建勇, 张旭乾, 杨辉, 陆荣秀. 单光照条件变化的镨/钕元素组分含量软测量[J]. 化工学报, 2019, 70(2): 780-788.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180819
算法 | 标识 | 公式 | 假设 |
---|---|---|---|
Max RGB | 颜色通道的最大响应是由场景中白色表面引起 | ||
Grey world | 场景中所有物理表面的平均反射是无色差的 | ||
Shades of Grey | |||
1st order Grey Edge | 场景中所有物理表面的平均反射的差分是无色差的 | ||
2nd order Grey Edge |
Table 1 Illumination estimation algorithm under framework of Grey Edge
算法 | 标识 | 公式 | 假设 |
---|---|---|---|
Max RGB | 颜色通道的最大响应是由场景中白色表面引起 | ||
Grey world | 场景中所有物理表面的平均反射是无色差的 | ||
Shades of Grey | |||
1st order Grey Edge | 场景中所有物理表面的平均反射的差分是无色差的 | ||
2nd order Grey Edge |
算法参数 | Median | Max | RMS |
---|---|---|---|
(0,∞,0) | 7.3978 | 13.5225 | 7.366 |
(0,1,0) | 5.3077 | 7.4289 | 5.3087 |
(0,6,0) | 6.8189 | 9.4978 | 6.9954 |
(1,4,1) | 4.7142 | 9.7849 | 5.3127 |
(2,4,1) | 2.5971 | 6.6029 | 3.4595 |
本文方法 | 2.1123 | 5.7033 | 3.1383 |
Table 2 Correction results under CWF illumination
算法参数 | Median | Max | RMS |
---|---|---|---|
(0,∞,0) | 7.3978 | 13.5225 | 7.366 |
(0,1,0) | 5.3077 | 7.4289 | 5.3087 |
(0,6,0) | 6.8189 | 9.4978 | 6.9954 |
(1,4,1) | 4.7142 | 9.7849 | 5.3127 |
(2,4,1) | 2.5971 | 6.6029 | 3.4595 |
本文方法 | 2.1123 | 5.7033 | 3.1383 |
算法参数 | Median | Max | RMS |
---|---|---|---|
(0,∞,0) | 2.0204 | 5.2705 | 2.2363 |
(0,1,0) | 1.9071 | 2.3626 | 1.7108 |
(0,6,0) | 2.2160 | 2.8259 | 1.9592 |
(1,3,2) | 0.7482 | 2.1210 | 1.0725 |
(2,4,1) | 2.6410 | 4.8058 | 2.9805 |
本文方法 | 0.4064 | 1.6542 | 0.5303 |
Table 3 Correction results under TL84 illumination
算法参数 | Median | Max | RMS |
---|---|---|---|
(0,∞,0) | 2.0204 | 5.2705 | 2.2363 |
(0,1,0) | 1.9071 | 2.3626 | 1.7108 |
(0,6,0) | 2.2160 | 2.8259 | 1.9592 |
(1,3,2) | 0.7482 | 2.1210 | 1.0725 |
(2,4,1) | 2.6410 | 4.8058 | 2.9805 |
本文方法 | 0.4064 | 1.6542 | 0.5303 |
算法参数 | Median | Max | RMS |
---|---|---|---|
(0,∞,0) | 11.1272 | 26.3815 | 11.8822 |
(0,1,0) | 5.0768 | 6.5793 | 5.2294 |
(0,6,0) | 6.5328 | 8.6094 | 6.7600 |
(1,4,1) | 2.9674 | 7.7753 | 3.6093 |
(2,4,1) | 7.2759 | 14.8727 | 7.8799 |
本文方法 | 1.8630 | 5.6311 | 2.6122 |
Table 4 Correction results under F illumination
算法参数 | Median | Max | RMS |
---|---|---|---|
(0,∞,0) | 11.1272 | 26.3815 | 11.8822 |
(0,1,0) | 5.0768 | 6.5793 | 5.2294 |
(0,6,0) | 6.5328 | 8.6094 | 6.7600 |
(1,4,1) | 2.9674 | 7.7753 | 3.6093 |
(2,4,1) | 7.2759 | 14.8727 | 7.8799 |
本文方法 | 1.8630 | 5.6311 | 2.6122 |
级数 | CWF | F | TL84 |
---|---|---|---|
1 | (2,10,3) | (1,4,1) | (0,1,7) |
20 | (1,9,3) | (1,3,1) | (0,12,7) |
40 | (2,4,1) | (1,12,1) | (1,2,6) |
60 | (2,4,1) | (2,4,2) | (2,9,3) |
80 | (2,1,2) | (0,1,7) | (2,8,6) |
98 | (2,4,1) | (2,14,3) | (2,3,3) |
Table 5 Some parameters optimized by GA
级数 | CWF | F | TL84 |
---|---|---|---|
1 | (2,10,3) | (1,4,1) | (0,1,7) |
20 | (1,9,3) | (1,3,1) | (0,12,7) |
40 | (2,4,1) | (1,12,1) | (1,2,6) |
60 | (2,4,1) | (2,4,2) | (2,9,3) |
80 | (2,1,2) | (0,1,7) | (2,8,6) |
98 | (2,4,1) | (2,14,3) | (2,3,3) |
建模方法 | γ | σ | wh | ws | wi |
---|---|---|---|---|---|
文献[7] | 47.3666 | 0.6251 | — | — | — |
LSSVM方法 | |||||
165.7639 | 0.7224 | — | — | — | |
本文方法 | 451.7836 | 0.5606 | 0.6755 | 0.2219 | 0.1026 |
Table 6 Parameters of soft-sensing model
建模方法 | γ | σ | wh | ws | wi |
---|---|---|---|---|---|
文献[7] | 47.3666 | 0.6251 | — | — | — |
LSSVM方法 | |||||
165.7639 | 0.7224 | — | — | — | |
本文方法 | 451.7836 | 0.5606 | 0.6755 | 0.2219 | 0.1026 |
方法 | MEANRE | MAXRE | RMSE |
---|---|---|---|
文献[6] | 4.3829 | 23.8627 | 8.1483 |
文献[7] | 4.6204 | 25.0991 | 8.0426 |
WLSSVM | 3.8204 | 21.13 | 7.086 |
CC-文献[6] | 2.5032 | 14.8014 | 4.8747 |
CC-文献[7] | 2.2765 | 9.4445 | 3.3919 |
CC-LSSVM | 1.2974 | 5.2151 | 1.9129 |
CC-WLSSVM | 1.2667 | 3.7082 | 1.7062 |
Table 7 Comparison of model performance
方法 | MEANRE | MAXRE | RMSE |
---|---|---|---|
文献[6] | 4.3829 | 23.8627 | 8.1483 |
文献[7] | 4.6204 | 25.0991 | 8.0426 |
WLSSVM | 3.8204 | 21.13 | 7.086 |
CC-文献[6] | 2.5032 | 14.8014 | 4.8747 |
CC-文献[7] | 2.2765 | 9.4445 | 3.3919 |
CC-LSSVM | 1.2974 | 5.2151 | 1.9129 |
CC-WLSSVM | 1.2667 | 3.7082 | 1.7062 |
akj | ——第k个染色体第j位 |
---|---|
alj | ——第l个染色体第j位 |
Fi | ——个体i的适应度值 |
Gmax | ——最大进化次数 |
g | ——当前迭代次数 |
H | ——HSI颜色空间的色彩 |
I | ——HSI颜色空间的强度 |
k | ——光照校正系数 |
kr,kg,kb | ——RGB三通道光照校正系数 |
N | ——种群个体数目 |
S | ——HSI颜色空间的饱和度 |
γ | ——惩罚系数 |
ρt | ——第t个样本的真实值 |
——第t个样本的模型预测值 | |
σ | ——核函数宽度 |
akj | ——第k个染色体第j位 |
---|---|
alj | ——第l个染色体第j位 |
Fi | ——个体i的适应度值 |
Gmax | ——最大进化次数 |
g | ——当前迭代次数 |
H | ——HSI颜色空间的色彩 |
I | ——HSI颜色空间的强度 |
k | ——光照校正系数 |
kr,kg,kb | ——RGB三通道光照校正系数 |
N | ——种群个体数目 |
S | ——HSI颜色空间的饱和度 |
γ | ——惩罚系数 |
ρt | ——第t个样本的真实值 |
——第t个样本的模型预测值 | |
σ | ——核函数宽度 |
1 | 陆荣秀, 何丽娟, 杨辉, 等. 稀土萃取分离过程组分含量区间控制方法[J]. 化工学报, 2017, 68(3): 1058-1064. |
LuR X, HeL J, YangH, et al. Component content control with zone control for rare earth extraction process[J]. CIESC Journal, 2017, 68(3): 1058-1064. | |
2 | 贾文君, 柴天佑. 稀土串级萃取分离过程元素组分含量的多模型软测量[J]. 控制理论与应用, 2007, 24(4): 569-573. |
JiaW J, ChaiT Y. Soft-sensor of element component content based on multiple models for the rare cascade extraction process[J]. Control Theory & Application, 2007, 24(4): 569-573. | |
3 | 向峥嵘, 刘松青. 基于LS-SVM 的稀土萃取组分含量软测量[J].中国稀土学报, 2009, 27(1): 132-136. |
XiangZ R, LiuS Q. Component content soft-sensor in rare earth extraction based on LS-SVM[J]. Journal of the Chinese Rare Earth Society, 2009, 27(1): 132-136. | |
4 | 田海, 郭智恒, 李兰云. 稀土萃取分离过程软测量方法的研究[J]. 中国稀土学报, 2015, 33(2): 201-205. |
TianH, GuoZ H, LiL Y. Soft-sensing in rare earth extraction[J]. Journal of the Chinese Rare Earth Society, 2015, 33(2): 201-205. | |
5 | 杨辉, 高子洁, 陆荣秀. 基于稀土离子颜色特征识别的组分含量检测方法[J]. 中国稀土学报, 2012, 30(1): 108-112. |
YangH, GaoZ J, LuR X. Detection method of component content based on rare earth ions color characteristics identification[J]. Journal of the Chinese Rare Earth Society, 2012, 30(1): 108-112. | |
6 | 陆荣秀, 叶兆斌, 杨辉, 等. 镨/钕萃取过程组分含量多RBF模型预测[J]. 化工学报, 2016, 67(3): 974-981. |
LuR X, YeZ B, YangH, et al. Multi-RBF models based prediction of component content for Pr/Nd extraction process[J]. CIESC Journal, 2016, 67(3): 974-981. | |
7 | 陆荣秀, 杨辉, 欧阳超明, 等. 基于PCA-LS_SVM的镨/钕萃取过程元素组分含量预测[J]. 南昌大学学报(理科版), 2013, 37(6): 589-593. |
LuR X, YangH, OuyangC M, et al. Forecast of element component content in Pr/Nd extraction process based on PCA-LS_SVM[J]. Journal of Nanchang University (Natural Science), 2013, 37(6): 589-593. | |
8 | BarnardK, CardeiV, FuntB. A comparison of computational color constancy algorithms(I): Methodology and experiments with synthesized data[J]. IEEE Transactions on Image Processing, 2002, 11(9): 972-983. |
9 | BarnardK, MartinL, CoathA. A comparison of computational color constancy algorithms(II): Experiments with image data[J]. IEEE Transactions on Image Processing, 2002, 11(9): 985-996. |
10 | 李兵. 颜色恒常性计算研究[D]. 北京: 北京交通大学, 2009. |
LiB. Research on color constancy computation[D]. Beijing: Beijing Jiaotong University, 2009. | |
11 | 鹿瑞. 自然图像的颜色恒常性计算研究[D]. 北京: 北京交通大学, 2010. |
LuR. Research on computational color constancy for natural images [D]. Beijing: Beijing Jiaotong University, 2010. | |
12 | 陈宁, 黄璐, 桂卫华, 等. 泡沫图像统计建模与恒常颜色校正算法研究[J]. 控制理论与应用, 2016, 33(5): 613–620. |
ChenN, HuangL, GuiW H, et al. The statistical modeling and constant color correction algorithms for froth image[J]. Control Theory & Applications, 2016, 33(5): 613–620. | |
13 | ZhouZ, XuR, WuD, et al. Illumination correction of dyeing products based on Grey-Edge and kernel extreme learning machine[J]. Optik, 2016, 127(19): 7978-7985. |
14 | 方帅, 赵育坤, 李心科, 等. 基于光照估计的夜间图像去雾[J]. 电子学报, 2016, 44 (11): 2569-2575. |
FangS, ZhaoY K, LiX K, et al. Nighttime haze removal based on illumination estimation[J]. Acta Electronica Sinica, 2016, 44(11): 2569-2575. | |
15 | WeijerJ V D, GeversT, GijsenijA. Edge-based color constancy[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2207-2214. |
16 | LandE H. The Retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108. |
17 | BuchsbaumG. A spatial processor model for object colour perception [J]. Journal of the Franklin Institute, 1980, 310(1): 1-26. |
18 | FinlaysonG D, TrezziE. Shades of gray and colour constancy [C]// The Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications, CIC 2004, Scottsdale, Arizona, USA. 2004: 37-41. |
19 | KriesJ. Chromatic adaptation[C]//Festschrift der Albrecht-Ludwigs-Universität in Freiburg zum Fünfzigjahrigen Regierungs-Jubiläum seiner Königlichen Hoheit des Groß herzogs Friedrich, 1902: 145-158. |
20 | GijsenijA, GeversT, WeijerJ V D. Computational color constancy: survey and experiments[J]. IEEE Transactions on IMAGE Processing, 2011, 20(9): 2475-2490. |
21 | GaoS B, YangK F, LiC Y, et al. Color constancy using double-opponency[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(10): 1973-1985. |
22 | ZhangX S, GaoS B, LiR X, et al. A retinal mechanism inspired color constancy model[J]. IEEE Transactions on Image Processing, 2016, 25(3): 1219-1232. |
23 | 赵新超, 刘国莅, 刘虎球, 等. 基于非均匀变异和多阶段扰动的粒子群优化算法[J]. 计算机学报, 2014, 37(9): 2058-2070. |
ZhaoX C, LiuG L, LiuH Q, et al. Particle swarm optimization algorithm based on non-uniform mutation and multiple stages perturbation[J]. Chinese Journal of Computers, 2014, 37(9): 2058-2070. | |
24 | WangJ, FanX, ZhangC, et al. A graph-based ant colony optimization approach for integrated process planning and scheduling[J]. Chinese Journal of Chemical Engineering, 2014, 22: 748-753. |
25 | 刘波, 王凌, 金以慧. 差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 721-729. |
LiuB, WangL, JinY H. Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721-729. | |
26 | XuY, WangZ Y, ZhuQ X. An improved hybrid genetic algorithm for chemical plant layout optimization with novel non-overlapping and toxic gas dispersion constraints [J]. Chinese Journal of Chemical Engineering, 2013, 21(4): 412-419. |
27 | 席裕庚, 柴天佑. 遗传算法综述[J]. 控制理论与应用, 1996, 13(6): 697-708.Xi Y G, Chai T Y. Survey on genetic algorithm[J]. Control Theory and Applications, 1996, 13(6): 697-708. |
28 | 戴晓晖, 李敏强, 寇纪淞. 遗传算法理论研究综述[J]. 控制与决策, 2000, 15(3): 263-268. |
DaiX H, LiM Q, KouJ S. Survey on theory of genetic algorithms[J]. Control and Decision, 2000, 15(3): 263-268. | |
29 | SuykensJ A K, BrabanterJ D, LukasL, et al. Weighted least squares support vector machines: robustness and sparse approximation[J]. Neurocomputing, 2002, 48: 85-105. |
30 | DingJ L, ChaiT Y, WangH. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization[J]. IEEE Transactions on Neural Network. 2011, 22(3): 408-419. |
31 | FengX Y, YuT, WangJ L. Nonlinear GPC with in-place trained RLS-SVM model for DOC control in a fed-batch bioreactor[J]. Chinese Journal of Chemical Engineering, 2012, 20(5): 988-994. |
[1] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[2] | Hui YANG, Wenhao DAI, Rongxiu LU, Jianyong ZHU. Simulation of rare earth extraction process based on separation coefficient correction [J]. CIESC Journal, 2020, 71(7): 3180-3190. |
[3] | Jianqing HU, Kan WANG, Bingjian ZHANG, Qinglin CHEN. Retrofit for lubricating furfural refining process based on phase diagram analysis [J]. CIESC Journal, 2020, 71(1): 237-244. |
[4] | LU Rongxiu, HE Lijuan, YANG Hui, ZHANG Guoqing. Component content control with zone control for rare earth extraction process [J]. CIESC Journal, 2017, 68(3): 1058-1064. |
[5] | LU Rongxiu, YE Zhaobin, YANG Hui, HE Feng. Multi-RBF models based prediction of component content for Pr/Nd extraction process [J]. CIESC Journal, 2016, 67(3): 974-981. |
[6] | LI Jinbo, CHENG Lin. Dynamic modeling and parameter optimization of single phase heating surface of heat recovery steam generator [J]. CIESC Journal, 2016, 67(11): 4599-4608. |
[7] | JIN Zhaoxu, LI Shuangxi, CAI Jining, ZHANG Qiuxiang. Hydrostatic structural parameters optimization of regulatable gas lubricated seal [J]. CIESC Journal, 2015, 66(4): 1425-1433. |
[8] | PENG Xudong, JIANG Jinbo, BAI Shaoxian, LI Jiyun, WANG Yuming. Structural parameter optimization of spiral groove dry gas seal under low or medium pressure [J]. CIESC Journal, 2014, 65(11): 4536-4542. |
[9] | WANG Jixuan1,HAN Zhonghe1,LIU Xiaozhen2,BAI Rui1,WANG Yingying1,WANG Jiangjiang1. Study on carbon capture system optimization of coal-fired power plant and analysis of its technical economy [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 773-780. |
[10] | WANG Zhiqi, ZHOU Naijun, XIA Xiaoxia, WANG Xiaoyuan. Multi-objective parametric optimization of power generation system based on organic Rankine cycle [J]. CIESC Journal, 2013, 64(5): 1710-1716. |
[11] | LU Ningyun, GONG Guixia, LV Jianhua, YANG Yi. Energy-saving-oriented production scheduling method for injection molding process with multiple products [J]. CIESC Journal, 2013, 64(3): 1008-1015. |
[12] | JIANG Huaqin, ZHAO Chengye, LIU Xinggao. Melt index prediction of propylene polymerization based on LSSVM using swarm intelligence optimization [J]. CIESC Journal, 2012, 63(9): 2794-2798. |
[13] | ZHENG Guang-Jian, CUI Xue-Min, ZHANG Wei-Peng, TONG Zhang-Fa, LI Feng. Al2O3-2SiO2 nanoparticles with defined Al-Si ratio: Processing optimization and conversion [J]. , 2012, 20(2): 312-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||