[1] |
徐光宪. 稀土[M]. 北京:冶金工业出版社, 2012. XU G X. Rare Earths[M]. Beijing:Metallurgical Industry Press, 2012.
|
[2] |
贾文君, 柴天佑. 稀土串级萃取分离过程组分含量的多模型软测量[J]. 控制理论与应用, 2007, 24(4):569-573. JIA W J, CHAI T Y. Soft-sensor of element component content based on multiple models for the rare cascade extraction process[J]. Control Theory & Application, 2007, 24(4):569-573.
|
[3] |
GILES A E, ALDRICH C, VAN J S J. Modeling of rare earth solvent extraction with artificial neural nets[J]. Hydrometallurgy, 1996, 43(1/2/3):241-255.
|
[4] |
YANG H, XU F P, LU R X, et al. Component content distribution profile control in rare earth countercurrent extraction process[J]. Chinese Journal of Chemical Engineering, 2015, 23(1):192-198.
|
[5] |
CAMACHO E F, BORDONS C. Model Predictive Control[M]. London:Springer Verlag London Limited, 2004.
|
[6] |
WU M, WANG C S, CAO W H, et al. Design and application of generalized predictive control strategy with closed-loop identification for burn-through point in sintering process[J]. Control Engineering Practice, 2012, 20(10):1065-1074.
|
[7] |
王洪瑞, 陈志旺, 李建雄. 非线性系统参数自适应直接广义预测控制[J]. 自动化学报, 2010, 33(10):1110-1114. WANG H R, CHEN Z W, LI J X. Direct generalized predictive control of parameter adaptation for nonlinear system[J]. Acta Automatica Sinica, 2010, 33(10):1110-1114.
|
[8] |
杨辉, 朱凡, 陆荣秀, 等. 基于ANFIS模型的Pr/Nd萃取过程预测控制[J]. 化工学报, 2016, 67(3):982-990. YANG H, ZHU F, LU R X, et al. ANFIS model-based predictive control for Pr/Nd cascade extraction process[J]. CIESC Journal, 2016, 67(3):982-990.
|
[9] |
李平, 任朋辉. 工业串联系统的多约束广义预测控制[J]. 化工学报, 2010, 61(8):2159-2164. LI P, REN P H. Multiple constrained generalized predictive control for cascade industrial systems[J]. CIESC Journal, 2010, 61(8):2159-2164.
|
[10] |
ZHANG J H, ZHOU Y L, LI Y, et al. Generalized predictive control applied in waste heat recovery power plants[J]. Applied Energy, 2013, 102(2):320-326.
|
[11] |
YANG H, MENG S S, SUN B H, et al. The multiple models predictive control of component content for the rare earth extraction procession[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, 2010, 20(1):5836-5841.
|
[12] |
JAEGER H. Adaptive nonlinear system identification with echo state networks[C]. Nips, 2003:609-616.
|
[13] |
JAEGER H, HAAS H. Harnessing nonlinearity:predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667):78-80.
|
[14] |
韩敏, 穆大芸. 回声状态网络LM算法及混沌时间序列预测[J]. 控制与决策, 2011, 26(10):1469-1472+1478. HAN M, MU D Y. LM algorithm in echo state network for chaotic time series prediction[J]. Control and Decision, 2011, 26(10):1469-1472+1478.
|
[15] |
方鲁杰, 李悦, 刘丽颖. 基于加权的区域预测控制算法研究[J]. 自动化与仪器仪表, 2015, 7:84-86. FANG L J, LI Y, LIU L Y. Research on the algorithm of region based on weighted prediction[J]. Automation & Instrumentation, 2015, 7:84-86.
|
[16] |
孙超, 周湛鹏, 郝晓辰, 等. 基于区间特性和变量软约束的模型预测控制算法[J]. 控制与决策, 2015, 30(10):1879-1884. SUN C, ZHOU S P, HAO X C, et al. Model predictive control algorithm based on interval characteristic and variable soft constraint[J]. Control and Decision, 2015, 30(10):1879-1884.
|
[17] |
金元郁, 顾兴源. 改进的广义预测控制算法[J]. 信息与控制, 1990, 3:8-14. JIN Y Y, GU X Y. Modified generalized predictive control algorithm[J]. Information and Control, 1990, 3:8-14.
|
[18] |
ARDALANI-FARSA M, ZOLFAGHARI S. Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks[J]. Neurocomputing, 2010, 73(13/14/15):2540-2553.
|
[19] |
ZHANG H G, LIU J H, MA D Z, et al. Data-core-based fuzzy min-max neural network for pattern classification[J]. IEEE Transactions on Neural Networks, 2011, 22(12):2339-2352.
|
[20] |
ZHANG H G, LIU D R, LUO Y H, et al. Adaptive Dynamic Programming for Control:Algorithms and Stability[M]. London:Springer, 2013:1-19.
|
[21] |
刘颖, 赵珺, 王伟, 等. 基于数据的改进回声状态网络在高炉煤气发生量预测中的应用[J]. 自动化学报, 2009, 35(6):731-738. LIU Y, ZHAO J, WANG W, et al. Improved echo state network based on data-driven and its application to prediction of blast furnace gas output[J]. Acta Automatica Sinica, 2009, 35(6):731-738.
|
[22] |
彭宇, 王建民, 彭喜元. 基于回声状态网络的时间序列预测方法研究[J]. 电子学报, 2010, 38(s1):148-154. PENG Y, WNBG J M, PENG X Y. Researches on time series prediction with echo state networks[J]. Acta Electronica Sinica, 2010, 38(s1):148-154.
|
[23] |
李军, 岳文琦. 基于泄漏积分型回声状态网络的软测量动态建模方法及应用[J]. 化工学报, 2014, 65(10):4004-4014. LI J, YUE W Q. Dynamic soft sensor modeling and its application using leaky-integrator ESN[J]. CIESC Journal, 2014, 65(10):4004-4014.
|
[24] |
许美玲, 韩敏. 多元混沌时间序列的因子回声状态网络预测模型[J]. 自动化学报, 2015, 41(5):1042-1046. XU M L, HAN M. Factor echo state network for multivariate chaotic time series prediction[J]. Acta Automatica Sinica, 2015, 41(5):1042-1046.
|
[25] |
LU C H, TSAI C C. Generalized predictive control using recurrent fuzzy neural networks for industrial processes[J]. Journal of Process Control, 2007, 17(1):83-92.
|
[26] |
ESCAÑO J M, BORDONS C, VILAS C, et al. Neurofuzzy model based predictive control for thermal batch processes[J]. Journal of Process Control, 2009, 19(9):1566-1575.
|
[27] |
CHEN X S, LI Q, FEI S M. Constrained model predictive control in ball mill grinding process[J]. Powder Technology, 2008, 186(1):31-39.
|
[28] |
邹涛, 李少远. 带有输出区域控制目标特性的多变量预测控制算法[J]. 控制与决策, 2005, 20(2):203-206. ZOU T, LI S Y. Multi-variable predictive control with output zone goals[J]. Control and Decision, 2005, 20(2):203-206.
|
[29] |
金鑫, 池清华, 刘康玲, 等. 对角CARIMA模型抗扰约束广义预测控制[J]. 化工学报, 2014, 65(4):1310-1316. JIN X, CHI Q H, LIU K L, et al. Disturbance rejection constraints generalized predictive control of diagonal CARIMA model[J]. CIESC Journal, 2014, 65(4):1310-1316.
|
[30] |
李国勇, 杨丽娟. 神经·模糊·预测控制及其MATLAB实现[M]. 北京:电子工业出版社, 2013:339-342. LI G Y, YANG L J. Neural·Fuzzy·Predictive Control Using MATLAB[M]. Beijing:Publishing House of Electronics Industry, 2013:339-342.
|