[1] |
杨辉, 柴天佑. 稀土分离过程综合自动化系统研究[J]. 稀有金属, 2004, 28 (6): 1071-1075. DOI: 10.3969/j.issn. 0258-7076.2004.06.024. YANG H, CHAI T Y. Integrated automation system for rare earths countercurrent extraction process[J]. Chinese Journal of Rare Mentals, 2004, 28 (6): 1071-1075. DOI: 10.3969/j.issn.0258-7076.2004.06.024.
|
[2] |
许勇刚, 杨辉. 基于RBF网络的稀土萃取过程组分含量软测量[J]. 稀土, 2007, 28 (5): 19-22. DOI: 10.3969/j.issn.1004-0277.2007.05.005. XU Y G, YANG H. Component content soft-senor based on RBF neural network in rare earth countercurrent extraction process[J]. Chinese Rare Earths, 2007, 28 (5): 19-22. DOI: 10.3969/j.issn.1004-0277.2007.05.005.
|
[3] |
田海, 郭智恒, 李兰云. 稀土萃取分离过程软测量方法的研究[J].中国稀土学报, 2015, 33 (2): 201-205. DOI: 10.11785/S1000-4343. 20150209. TIAN H, GUO Z H, LI L Y. Soft-sensing in rare earth extraction[J]. Journal of the Chinese Rare Earth Society, 2015, 33 (2): 201-205. DOI: 10.11785/S1000-4343. 20150209.
|
[4] |
向峥嵘, 刘松青. 基于LS-SVM的稀土萃取组分含量软测量[J].中国稀土学报, 2009, 27 (1): 132-136. DOI: 10.3321/j.issn.1000-4343.2009.01.024. XIANG Z R, LIU S Q. Component content soft-sensor in rare earth extraction based on LS-SVM[J]. Journal of the Chinese Rare Earth Society, 2009, 27 (1): 132-136. DOI: 10.3321/j.issn.1000-4343.2009. 01.024.
|
[5] |
贾文君, 柴天佑. 稀土串级萃取分离过程元素组分含量的多模型软测量[J]. 控制理论与应用, 2007, 24 (4): 569-573. DOI: 10.3969/j.issn.1000-8152.2007.04.011. JIA W J, CHAI T Y. Soft-sensor of element component content based on multiple models for the rare earth cascade extraction process[J]. Control Theory & Applications, 2007, 24 (4):569-573. DOI: 10.3969/j.issn.1000-8152.2007.04.011.
|
[6] |
李修亮, 苏宏业, 褚健. 基于在线聚类的多模型软测量建模方法[J]. 化工学报, 2007, 58 (11): 2834-2839. DOI: 10.3321/j.issn:0438-1157.2007.11.025. LI X L, SU H Y, CHU J. Multiple models soft-sensing technique based on online clustering arithmetic[J]. Journal of Chemical Industry and Engineering (China), 2007, 58 (11): 2834-2839. DOI: 10.3321/j.issn. 0438-1157.2007.11.025.
|
[7] |
杜文莉, 官振强, 钱锋. 一种基于时序误差补偿的动态软测量建模方法[J]. 化工学报, 2010, 61 (2): 439-443. DU W L, GUAN Z Q, QIAN F. Dynamic soft sensor modeling based on time series error compensation[J]. CIESC Journal, 2010, 61 (2): 439-443.
|
[8] |
杨辉, 高子洁, 陆荣秀. 基于稀土离子颜色特征识别的组分含量检测方法[J]. 中国稀土学报, 2012, 30 (1): 108-112. YANG H, GAO Z J, Lu R X. Detection method of component content based on rare earth ions color characteristics identification[J]. Journal of the Chinese Rare Earth Society, 2012, 30 (1): 108-112.
|
[9] |
陆荣秀, 杨辉, 欧阳超明, 等. 基于PCA-LS_SVM的镨/钕萃取过程元素组分含量预测[J]. 南昌大学学报 (理科版), 2013, 37 (6): 589-593. DOI: 10.3969/j.issn.1006-0464. 2013.06.018. LU R X, YANG H, OUYANG C M, et al. Forecast of element component content in Pr/Nd extraction process based on PCA-LS_SVM[J]. Journal of Nanchang University (Natural Science), 2013, 37 (6): 589-593. DOI: 10.3969/j.issn.1006-0464. 2013.06.018.
|
[10] |
柴天佑, 杨辉.稀土萃取分离过程自动控制研究现状及发展趋势[J].中国稀土学报, 2004, 22 (4): 427-433. DOI: 10.3321/j.issn:1000-4343.2004.04.001. CHAI T Y, YANG H. Situation and developing trend of rare-earth countercurrent extraction processes control[J]. Journal of the Chinese Rare Earth Society, 2004, 22 (4): 427-433. DOI: 10.3321/j.issn:1000-4343.2004.04.001.
|
[11] |
HUANG M Z, WAN J Q, MA Y W, et al. A fast predicting neural fuzzy model for online estimation of nutrient dynamics in an anoxie/oxic process[J]. Bioresource Technology, 2010, 101 (6): 1642-1651.
|
[12] |
ALTUNAY P, SEVER A, SERDAR S G, et al. Prediction of effluent quality of an anaerobic treatment plant under unsteady state through ANFIS modeling with online input variables[J]. Chemical Engineering Journal, 2008, 145 (1): 78-85.
|
[13] |
唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法[J]. 化工学报, 2011, 62 (8): 2248-2252. DOI: 10.3969/j.issn.0438-1157.2011.08.028. TANG Z J, TANG Z H, ZHU H Q. A multi-model fusion soft sensor modeling method[J]. CIESC Journal, 2011, 62 (8): 2248-2252. DOI: 10.3969/j.issn.0438-1157.2011.08.028.
|
[14] |
张昭昭, 乔俊飞. 基于在线减法聚类的RBF神经网络结构设计[J]. 控制与决策, 2012, 27 (7): 997-1002. ZHANG Z Z, QIAO J F. Design RBF neural network architecture based on online subtractive clustering[J]. Control and Decision, 2012, 27 (7): 997-1002.
|
[15] |
陆荣秀, 欧阳超明, 杨辉, 等. HSI颜色模型在镨钕组分含量检测中的应用[J]. 计算机与应用化学, 2013, 30 (10): 1157-1161. DOI: 10.3969/j.issn.1001-4160.2013. 10.016. LU R X, OUYANG C M, YANG H, et al. Pr/Nd component content detection using a HSI color model[J]. Computers and Applied Chemistry, 2013, 30 (10): 1157-1161. DOI: 10.3969/j.issn.1001-4160.2013. 10.016.
|
[16] |
XIONG S W, NIU X X, LIU H B. Support vector machines based on subtractive clustering[C]//Proceeding of the Fourth International Conference on Machine Learning and Cybernetics, 2005: 43-45.
|
[17] |
潘天红, 薛振框, 李少远. 基于减法聚类的多模型在线辨识算法[J]. 自动化学报, 2009, 35 (2): 220-224. DOI: 10.3724/SP.J.1004. 2009.00220. PAN T H, XUE Z K, LI S Y. An online multi-model identification algorithm based on subtractive clustering[J]. Acta Automatica Sinica, 2009, 35 (2): 220-224. DOI: 10.3724/SP.J.1004.2009.00220.
|
[18] |
魏海坤, 宋文忠, 李奇. 基于RBF网络的火电机组实时成本在线建模方法[J]. 中国电机工程学报, 2004, 24 (7): 250-256. DOI: 10.3321/j.issn:0258-8013.2004.07. 047. WEI H K, SONG W Z, LI Q. A RBF network based online modeling method for realtime cost model in power plant[J]. Proceedings of the CSEE, 2004, 24 (7): 250-256. DOI: 10.3321/j.issn:0258-8013.2004.07. 047.
|
[19] |
乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计[J]. 自动化学报, 2010, 36 (6): 865-872. DOI: 10.3724/SP.J. 1004.2010.00865. QIAO J F, HAN H G. Optimal structure design for RBFNN structure[J]. Acta Automatica Sinica, 2010, 36 (6): 865-872. DOI: 10.3724/SP.J.1004.2010.00865.
|
[20] |
HAO C, YU G, XIA H. Online modeling with tunable RBF network[J]. IEEE Transactions on Cybernetics, 2013, 43 (3): 935-947.
|