CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 182-185.DOI: 10.11949/j.issn.0438-1157.20181379
• Energy and environmental engineering • Previous Articles Next Articles
Hu CHEN1(),Qian CHEN2(
),Changjun LIU2,Kama HUANG2,Zhuo LONG2
Received:
2018-11-20
Revised:
2019-01-14
Online:
2019-03-31
Published:
2019-03-31
Contact:
Qian CHEN
通讯作者:
陈倩
作者简介:
<named-content content-type="corresp-name">陈虎</named-content>(1973—),男,硕士研究生,副教授,<email>novman@163.com</email>|陈倩(1975—),女,博士,副教授,<email>chenqian@scu.edu.cn</email>
基金资助:
CLC Number:
Hu CHEN, Qian CHEN, Changjun LIU, Kama HUANG, Zhuo LONG. Broadband permittivity measurement apparatus using substrate integrated waveguide structure[J]. CIESC Journal, 2019, 70(S1): 182-185.
陈虎, 陈倩, 刘长军, 黄卡玛, 龙卓. 基于SIW的介电系数宽带测量装置[J]. 化工学报, 2019, 70(S1): 182-185.
待测物质 | 介电系数的实部 | ||
---|---|---|---|
反演值 | 标准值 | 相对误差/% | |
待测物1 | 4.65 | 4.85 | -4.1 |
待测物2 | 11.62 | 12 | -3.2 |
Table 1 Inversed real part of complex permittivity
待测物质 | 介电系数的实部 | ||
---|---|---|---|
反演值 | 标准值 | 相对误差/% | |
待测物1 | 4.65 | 4.85 | -4.1 |
待测物2 | 11.62 | 12 | -3.2 |
待测物质 | 介电系数的损耗角正切 | ||
---|---|---|---|
反演值 | 标准值 | 相对误差/% | |
待测物1 | 0.67 | 0.65 | 3.1 |
待测物2 | 0.29 | 0.3 | -3.3 |
Table 2 Inversed loss tangent of complex permittivity
待测物质 | 介电系数的损耗角正切 | ||
---|---|---|---|
反演值 | 标准值 | 相对误差/% | |
待测物1 | 0.67 | 0.65 | 3.1 |
待测物2 | 0.29 | 0.3 | -3.3 |
1 | 金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999. |
JingQ H, DaiS S, HuangK M. Microwave Chemistry[M]. Beijing: Science Press, 1999. | |
2 | FisherL B, DaltonT, EleckD. Bioeffects of microwave—a brief review [J]. Bioresource Technology Microwave Power, 1986, 87(2): 58-216. |
3 | SeniseJ T, JermoloviciusL A. Microwave chemistry—a fertile field for scientific research and industrial applications[C]// SBMO/IEEE MTT - International Microwave and Optoelectronics Conference Proceedings. 2003, 3(9): 1-6. |
4 | Al-HarahshehM, KingmanS W. Microwave-assisted leaching—a review [J]. Hydrometallurgy, 2004, 73(3/4): 189-203. |
5 | HaqueK E. Microwave energy for mineral treatment processes—a brief review [J]. Int. J. Miner. Process. , 1999, 57(1): 1-24. |
6 | GuoW C, ZhuX H, LiuH, et al. Effects of milk concentration and freshness on microwave dielectric properties[J]. Journal of Food Engineering, 2010, 99: 344-350. |
7 | ZhuX H, GuoW C, LiangZ B. Determination of the fat content in cow s milk based on dielectric properties[J]. Food Bioprocess Technol., 2015, 8: 1485-1494. |
8 | NunesA C, BohigasX, TejadaJ. Dielectric study of milk for frequencies between 1 and 20 GHz[J]. Journal of Food Engineering, 2006, 76: 250-255. |
9 | HasarU C. A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials [J]. IEEE Transaction on Microwave Theory and Techniques, 2009, 57(6): 1595-1601. |
10 | MeyerW. Dielectric measurements on polymeric materials by using superconducting microwave resonators [J]. IEEE Trans. Microwave Theory Tech., 1977, 25(10): 1092-1099. |
11 | TakanashiT, IijimaY, MiuraT. Measurement of the temperature dependence of relative permittivity by the cavity perturbation method[J]. IEEE MTT-S Int. Microwave Symp. Dig., 1997, 3: 1683-1686. |
12 | LiS, AkyelC, BosisioR G. Precise measurement and calculation on the complex dielectric constant of lossy materials using TM010 perturbation cavity techniques[J]. IEEE Trans. Microwave Theory Tech., 1981, 29(10): 1041-1048. |
13 | HartsgroveG, KraszewskiA, SurowiecA. Simulated biological materials for electromagnetic radiation absorption studies[J] Bioelectromagnetics, 1987, 8: 29-36. |
14 | MengB, BooskeJ, CooperR. Extended cavity perturbation technique to determine the complex permittivity of dielectric materials[J]. IEEE Trans. Microwave Theory Tech., 1995, 43(11): 2633-2635. |
15 | YuK B, OgourstsovS G, BelenkyV G, et al. Accurate microwave resonant method for complex permittivity measurements of liquids [J]. IEEE Transaction on Microwave Theory and Techniques, 2000, 48(11): 2159-2164. |
16 | ChenQ, HuangK M, LiuC J, et al. Coaxial apparatus to measure the permittivities of chemical solution at microwave frequencies[J]. Review of Scientific Instruments, 2017, (88): 046102. |
17 | ChenQ, HuangK M, YangX Q, et al. An artificial nerve network realization in the measurement of material permittivity[J]. Progress in Electromagnet Research, 2011, 116: 347-361. |
18 | Baker-JarvisJ, VanzuraE J, KissickW A. Improved technique for determining complex permittivity with the transmission/reflection method[J]. IEEE Trans. Microw. Theory Tech., 1990, 38(8): 1096-1103. |
19 | WilliamsT C, StuchlyM A, SavilleP. Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials[J]. IEEE Trans. Microw. Theory Tech., 2003, 51(5): 1560-1566. |
20 | LiuC J, PuY. A microstrip resonator with slotted ground plane for complex permittivity measurements of liquids[J]. IEEE Microwave and Wireless Components Letters, 2008, 18( 4): 257-259. |
21 | LiuC J, TongF. An SIW resonator sensor for liquid permittivity measurements at C band[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(11): 751-753. |
22 | FesharekiF, AkyelC, WuK. Broadband permittivity measurement of dielectric materials using discontinuity in substrate integrated waveguide[J]. Electronics Letters, 2013, 49 (3): 1-2. |
23 | ZhangT, HongW, ZhangY, et al. Design and analysis of SIW cavity backed dual-band antennas with a dual-mode triangular-ring slot[J]. IEEE Transaction on Antenna and Propagation, 2014, 62(10): 5007-5016. |
24 | AbhishekS, VijayD, RabindraK, et al. Recent advance in theory and applications of substrate-integrated waveguides: a review[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 10: 129-145. |
25 | HongW, WuK, TangH J, et al. SIW-like guided wave structures and applications[J]. IEICE Trans. Electron., 2009, e92-c(9): 1111-1123. |
26 | SulavA, GhiottoA, WuK. Simultaneous electric and magnetic two-dimensionally tuned parameter-agile SIW device[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 423-435. |
27 | HuangK M, CaoX J, LiuC J, et al. Measurement/computation of effective permittivity of dilute solution in saponification reaction[J]. IEEE Trans. Microw. Theory Tech., 2003, 51(10): 2106-2111. |
28 | LuoM, HuangK M, PuT L, et al. Measurement and prediction of dielectric for liquids based artificial nerve network[C]// Microwave and Millimeter Wave Technology (ICMMT), 2010 International Conference on. IEEE, 2010: 1083-1085. |
29 | ChenQ, HuangK M, YangX Q, et al. A BP neural network realization in the measurement of material permittivity[J]. Journal of Software, 2011, 6: 1089-1095. |
30 | SatoT, ChibaA, NozakiR. Dielectric relaxation mechanism and dynamical structures of the alcohol/water mixtures[J]. Journal of Molecular Liquids, 2002, 101: 99-111. |
31 | SatoT, ChibaA, NozakiR. Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process[J]. The Journal of Chemical Physics, 1999, 5: 2508-2521. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[10] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[12] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[13] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[14] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[15] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 398
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||