CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2727-2736.DOI: 10.11949/0438-1157.20190155
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Li ZHANG1(),Xinyu WANG2,Zheng LI1,Junfeng GU1,3,Shilun RUAN1,3(),Changyu SHEN1,3
Received:
2019-02-26
Revised:
2019-04-29
Online:
2019-07-05
Published:
2019-07-05
Contact:
Shilun RUAN
张黎1(),王新宇2,李征1,谷俊峰1,3,阮诗伦1,3(),申长雨1,3
通讯作者:
阮诗伦
作者简介:
张黎(1995—),女,硕士研究生,<email>zl19950124@163.com</email>
基金资助:
CLC Number:
Li ZHANG, Xinyu WANG, Zheng LI, Junfeng GU, Shilun RUAN, Changyu SHEN. Prediction study on bond strength and modulus of fused deposition modeling product[J]. CIESC Journal, 2019, 70(7): 2727-2736.
张黎, 王新宇, 李征, 谷俊峰, 阮诗伦, 申长雨. 熔融沉积3D打印材料粘接强度及模量预测研究[J]. 化工学报, 2019, 70(7): 2727-2736.
Add to citation manager EndNote|Ris|BibTeX
打印条件编号 | 打印速率/(mm/s) | 喷嘴温度/℃ | 平台温度/℃ | 层高/mm | 纤维宽度/mm | 单层打印时间/s |
---|---|---|---|---|---|---|
1 | 40 | 250 | 100 | 0.2 | 0.4 | 6 |
2 | 60 | 250 | 100 | 0.2 | 0.4 | 4 |
3 | 20 | 250 | 100 | 0.2 | 0.4 | 12 |
4 | 40 | 230 | 100 | 0.2 | 0.4 | 6 |
5 | 40 | 250 | 80 | 0.2 | 0.4 | 6 |
6 | 40 | 250 | 100 | 0.1 | 0.4 | 6 |
7 | 40 | 250 | 100 | 0.3 | 0.4 | 6 |
Table 1 Parameters of different printing conditions
打印条件编号 | 打印速率/(mm/s) | 喷嘴温度/℃ | 平台温度/℃ | 层高/mm | 纤维宽度/mm | 单层打印时间/s |
---|---|---|---|---|---|---|
1 | 40 | 250 | 100 | 0.2 | 0.4 | 6 |
2 | 60 | 250 | 100 | 0.2 | 0.4 | 4 |
3 | 20 | 250 | 100 | 0.2 | 0.4 | 12 |
4 | 40 | 230 | 100 | 0.2 | 0.4 | 6 |
5 | 40 | 250 | 80 | 0.2 | 0.4 | 6 |
6 | 40 | 250 | 100 | 0.1 | 0.4 | 6 |
7 | 40 | 250 | 100 | 0.3 | 0.4 | 6 |
比热容/ (J/(kg?℃)) | 热导率/ (W/(m?K)) | 密度/(kg/m3) | 对流传热系数/ (W/(m2?℃)) |
---|---|---|---|
2340 | 0.234 | 1040 | 10 |
Table 2 Material property parameters
比热容/ (J/(kg?℃)) | 热导率/ (W/(m?K)) | 密度/(kg/m3) | 对流传热系数/ (W/(m2?℃)) |
---|---|---|---|
2340 | 0.234 | 1040 | 10 |
打印条件 编号 | 纤维宽度/mm | 粘接宽度/mm | 纤维宽度/mm | fwetting |
---|---|---|---|---|
1 | 0.40 | 0.33 | 0.43 | 0.78 |
2 | 0.40 | 0.34 | 0.44 | 0.77 |
3 | 0.40 | 0.34 | 0.44 | 0.78 |
4 | 0.40 | 0.33 | 0.44 | 0.76 |
5 | 0.40 | 0.32 | 0.43 | 0.75 |
6 | 0.40 | 0.39 | 0.43 | 0.90 |
7 | 0.40 | 0.27 | 0.44 | 0.61 |
Table 3 Fiber widths and bond widths under different printing conditions
打印条件 编号 | 纤维宽度/mm | 粘接宽度/mm | 纤维宽度/mm | fwetting |
---|---|---|---|---|
1 | 0.40 | 0.33 | 0.43 | 0.78 |
2 | 0.40 | 0.34 | 0.44 | 0.77 |
3 | 0.40 | 0.34 | 0.44 | 0.78 |
4 | 0.40 | 0.33 | 0.44 | 0.76 |
5 | 0.40 | 0.32 | 0.43 | 0.75 |
6 | 0.40 | 0.39 | 0.43 | 0.90 |
7 | 0.40 | 0.27 | 0.44 | 0.61 |
打印条件编号 | 环境温度/℃ | 基底温度/℃ |
---|---|---|
1 | 50.07 | 77.67 |
2 | 51.74 | 92.65 |
3 | 49.84 | 58.1 |
4 | 51.77 | 75.01 |
5 | 45.18 | 73.42 |
6 | 52.3 | 69.53 |
7 | 51.74 | 79.7 |
Table 4 Environment and substrate temperature
打印条件编号 | 环境温度/℃ | 基底温度/℃ |
---|---|---|
1 | 50.07 | 77.67 |
2 | 51.74 | 92.65 |
3 | 49.84 | 58.1 |
4 | 51.77 | 75.01 |
5 | 45.18 | 73.42 |
6 | 52.3 | 69.53 |
7 | 51.74 | 79.7 |
部件 | 弹性模量E/MPa | Poisson比ν | 密度ρ/(kg/m3) |
---|---|---|---|
part-1 | 2300.00 | 0.38 | 1150 |
part-2 | 819.83 | 0.38 | 1150 |
压头/支座 | 2.10×105 | 0.3 | 7900 |
Table 5 Material properties for mechanical XFEM analysis
部件 | 弹性模量E/MPa | Poisson比ν | 密度ρ/(kg/m3) |
---|---|---|---|
part-1 | 2300.00 | 0.38 | 1150 |
part-2 | 819.83 | 0.38 | 1150 |
压头/支座 | 2.10×105 | 0.3 | 7900 |
1 | 韩江, 王益康, 田晓青, 等. 熔融沉积(FDM) 3D打印工艺参数优化设计研究[J]. 制造技术与机床, 2016, (6): 139-142. |
HanJ, WangY K, TianX Q, et al. Optimum design of 3D printing process parameters for fused deposition modeling(FDM) [J]. Manufacturing Technology and Machine Tools, 2016, (6): 139-142. | |
2 | 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128. |
ZhangX J, TangS Y, ZhaoH Y, et al. Research status and key technologies of 3D printing technology[J]. Material Engineering, 2016, 44(2): 122-128. | |
3 | SinghS, RamakrishnaS, SinghR. Material issues in additive manufacturing: a review[J]. Journal of Manufacturing Processes, 2017, 25: 185-200. |
4 | LongJ, GholizadehH, LuJ, et al. Application of fused deposition modeling (FDM) method of 3D printing in drug delivery[J]. Current Pharmaceutical Design, 2017, 23(3): 433-439. |
5 | GaoW, ZhangY, RamanujanD, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015, 69: 65-89. |
6 | VishwasM, BasavarajC. Studies on optimizing process parameters of fused deposition modeling technology for ABS[J]. Materials Today: Proceedings, 2017, 4(10): 10994-11003. |
7 | TanD, ManiruzzamanM, NokhodchiA. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modeling (FDM) 3D printing for personalised drug delivery[J]. Pharmaceutics, 2018, 10(4): 203. |
8 | 夏春蕾, 张均, 姜志国. 熔融沉积成型3D打印技术应用进展及展望[J]. 工程塑料应用, 2017, 45(3): 130-133. |
XiaC L, ZhangJ, JiangZ G. Progress and prospect of 3D printing technology for fused deposition modeling[J]. Engineering Plastics Applications, 2017, 45 (3): 130-133. | |
9 | 唐通鸣, 张政, 邓佳文, 等. 基于 FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43(6): 228-230. |
TangT M, ZhangZ, DengJ W, et al. Research status and development trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43 (6): 228-230. | |
10 | CasavolaC, CazzatoA, MoramarcoV, et al. Residual stress measurement in fused deposition modeling parts[J]. Polymer Testing, 2017, 58: 249-255. |
11 | ChaoI, YoungJ, Coles BlackJ, et al. The application of three-dimensional printing technology in anaesthesia: a systematic review[J]. Anaesthesia, 2017, 72(5): 641-650. |
12 | SalentijnG I, OomenP E, GrajewskiM, et al. Fused deposition modeling 3D printing for (bio) analytical device fabrication: procedures, materials, and applications[J]. Analytical Chemistry, 2017, 89(13): 7053-7061. |
13 | SolankiN G, TahsinM, ShahA V, et al. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: screening polymers for drug release, drug-polymer miscibility and print ability[J]. Journal of Pharmaceutical Sciences, 2018, 107(1): 390-401. |
14 | SunQ, RizviG, BellehumeurC, et al. Effect of processing conditions on the bonding quality of FDM polymer filaments[J]. Rapid Prototyping Journal, 2008, 14(2): 72-80. |
15 | GriffithsC, HowarthJ, G D-ARowbotham, et al. Effect of build parameters on processing efficiency and material performance in fused deposition modeling[J]. Procedia CIRP, 2016, 49: 28-32. |
16 | BellehumeurC, LiL, SunQ, et al. Modeling of bond formation between polymer filaments in the fused deposition modeling process[J]. Journal of Manufacturing Processes, 2004, 6(2): 170-178. |
17 | NingF, CongW, HuZ, et al. Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: a comparison of two reinforcements[J]. Journal of Composite Materials, 2017, 51(27): 3733-3742. |
18 | 李初然. 浅析现代3D打印技术[J]. 科技创新导报, 2017, (28): 91-92. |
LiC R. A brief analysis of modern 3D printing technology[J]. Science and Technology Innovation Report, 2017, (28): 91-92. | |
19 | 赵天婵, 黄海. 基于3D打印的熔融沉积快速成型工艺若干问题研究[J]. 机械工程师, 2016, (4): 22-23. |
ZhaoT C, HuangH. Research on problems of fused deposition rapid prototyping technology based on 3D printing [J]. Mechanical Engineer, 2016, (4): 22-23. | |
20 | YinJ, LuC, FuJ, et al. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion[J]. Materials & Design, 2018, 150: 104-112. |
21 | WolszczakP, LygasK, PaszkoM, et al. Heat distribution in material during fused deposition modeling[J]. Rapid Prototyping Journal, 2018, 24(3): 615-622. |
22 | TurnerN B, StrongR, GoldA S. A review of melt extrusion additive manufacturing process (Ⅰ): Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192-204. |
23 | GurralaP K, RegallaS P. Part strength evolution with bonding between filaments in fused deposition modelling: this paper studies how coalescence of filaments contributes to the strength of final FDM part[J]. Virtual and Physical Prototyping, 2014, 9(3): 141-149. |
24 | CooganT J, KazmerD O. Healing simulation for bond strength prediction of FDM[J]. Rapid Prototyping Journal, 2017, 23(3): 551-561. |
25 | LodgeT P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers[J]. Physical Review Letters, 1999, 83(16): 3218. |
26 | HillN, HaghiM. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate[J]. Rapid Prototyping Journal, 2014, 20(3): 221-227. |
27 | BelliniA, Eri SG. Mechanical characterization of parts fabricated using fused deposition modeling[J]. Rapid Prototyping Journal, 2003, 9(4): 252-264. |
28 | WoolR, Connor KO. Time dependence of crack healing[J]. Journal of Polymer Science: Polymer Letters Edition, 1982, 20(1): 7-16. |
29 | WoolR, YuanB L, McgarelO. Welding of polymer interfaces[J]. Polymer Engineering & Science, 1989, 29(19): 1340-1367. |
30 | WilliamsM L, LandelR F, FerryJ D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[10] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[11] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[12] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[13] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[14] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[15] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||