CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2737-2747.DOI: 10.11949/0438-1157.20190176
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xiuxiu LI(),Yibin WEI,Zixuan XIE,Hong QI()
Received:
2019-03-03
Revised:
2019-04-29
Online:
2019-07-05
Published:
2019-07-05
Contact:
Hong QI
通讯作者:
漆虹
作者简介:
李秀秀(1993—),女,硕士研究生,<email>862421611@qq.com</email>
基金资助:
CLC Number:
Xiuxiu LI, Yibin WEI, Zixuan XIE, Hong QI. Hydrophobic modification of Al2O3 and SiC microfiltration membranes for oil-solid separation[J]. CIESC Journal, 2019, 70(7): 2737-2747.
李秀秀, 魏逸彬, 谢子萱, 漆虹. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(7): 2737-2747.
Add to citation manager EndNote|Ris|BibTeX
Membrane | Porosity/% | Outer/inner diameter /mm | Effective membrane area/cm2 |
---|---|---|---|
Al2O3 | 30—35 | 12.8/8 | 24.2 |
SiC | 30—35 | 12.8/8 | 24.2 |
Table 1 Specification parameters of ceramic membranes
Membrane | Porosity/% | Outer/inner diameter /mm | Effective membrane area/cm2 |
---|---|---|---|
Al2O3 | 30—35 | 12.8/8 | 24.2 |
SiC | 30—35 | 12.8/8 | 24.2 |
Membranes | Average pore size | WCA | Application | Ref. |
---|---|---|---|---|
Al2O3 | 0.76 μm | 133° | NaCl | [10] |
TiO2-Al2O3 | 12.9 nm | 116° | NaCl | [24] |
Al2O3 | 0.7 μm | 130° | NaCl | [25] |
γ/α-Al2O3 | 5 nm | 134° | H2/CO2 | [26] |
ZrO2 | 0.2 μm | 134° | W/O | [27] |
Al2O3 | 0.5 μm | 134° | W/O | this work |
SiC | 0.5 μm | 140° | W/O | this work |
Table 2 Comparison of hydrophobicity of hydrophobic ceramic membranes prepared via chemical grafting method
Membranes | Average pore size | WCA | Application | Ref. |
---|---|---|---|---|
Al2O3 | 0.76 μm | 133° | NaCl | [10] |
TiO2-Al2O3 | 12.9 nm | 116° | NaCl | [24] |
Al2O3 | 0.7 μm | 130° | NaCl | [25] |
γ/α-Al2O3 | 5 nm | 134° | H2/CO2 | [26] |
ZrO2 | 0.2 μm | 134° | W/O | [27] |
Al2O3 | 0.5 μm | 134° | W/O | this work |
SiC | 0.5 μm | 140° | W/O | this work |
Membranes | Mass loss(110—230℃)/% | n(-OH)/(mmol·g-1) |
---|---|---|
A-500 | 0.0197 | 0.0394 |
A-500HB | 0.0154 | 0.0308 |
S-500 | 0.0757 | 0.151 |
S-500HB | 0.0128 | 0.0256 |
Table 3 Mass loss within 110—230℃ and hydroxyl group content of ceramic membranes before and after modification
Membranes | Mass loss(110—230℃)/% | n(-OH)/(mmol·g-1) |
---|---|---|
A-500 | 0.0197 | 0.0394 |
A-500HB | 0.0154 | 0.0308 |
S-500 | 0.0757 | 0.151 |
S-500HB | 0.0128 | 0.0256 |
Ceramic membrane | Contact angle/(°) | Surface free energy/(mN·m-1) | ||||
---|---|---|---|---|---|---|
Water | Ethylene glycol | Diiodo-methane | Dispersive component | Non-dispersive component | Total | |
A-500 | 23 | 24 | 19 | 42.3 | 7.67 | 50.0 |
A-500HB | 134 | 55 | 39 | 36.6 | 3.01 | 39.6 |
S-500 | 10 | 20 | 8 | 44.5 | 7.39 | 51.9 |
S-500HB | 140 | 58 | 42 | 35.4 | 2.68 | 38.1 |
Table 4 Contact angles and surface free energy of ceramic membranes before and after modification
Ceramic membrane | Contact angle/(°) | Surface free energy/(mN·m-1) | ||||
---|---|---|---|---|---|---|
Water | Ethylene glycol | Diiodo-methane | Dispersive component | Non-dispersive component | Total | |
A-500 | 23 | 24 | 19 | 42.3 | 7.67 | 50.0 |
A-500HB | 134 | 55 | 39 | 36.6 | 3.01 | 39.6 |
S-500 | 10 | 20 | 8 | 44.5 | 7.39 | 51.9 |
S-500HB | 140 | 58 | 42 | 35.4 | 2.68 | 38.1 |
Fig.12 Optical photographs for oil-solid mixture (a), filtrates obtained by using membrane A-500HB (b) and filtrates obtained by using membrane S-500HB (c)
1 | 袁腾, 陈卓, 周显宏, 等. 基于超亲水超疏油原理的网膜及其在油水分离中的应用[J]. 化工学报, 2014, 65(6): 1943-1951. |
YuanT, ChenZ, ZhouX H, et al. Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J]. CIESC Journal, 2014, 65(6): 1943-1951. | |
2 | WeiY B, QiH, GongX, et al. Specially wettable membranes for oil-water separation[J]. Advanced Materials Interfaces, 2018, 5(23): 1800576. |
3 | ChenX, LimJ F, XuY, et al. Operating conditions and feed composition on filtering emulsified oil using ceramic-hybrid membrane[J]. Ceramics International, 2016, 42(15): 17101-17109. |
4 | 张谨, 李俊俊, 纪晓声, 等. 利用混凝-超滤膜法研究乳化油水的分离过程[J]. 高校化学工程学报, 2017, 31(2): 449-455. |
ZhangJ, LiJ J, JiX S, et al. Study on oil separation from oil/water emulsion via coagulation and ultrafiltration[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(2): 449-455. | |
5 | 刘君腾, 卿伟华, 任钟旗, 等. 超疏水聚四氟乙烯丝网用于原油脱水的研究[J]. 高校化学工程学报, 2012, 26(4): 563-568. |
LiuJ T, QingW H, RenZ Q, et al. The study of crude oil dehydration using super-hydrophobic PTFE-coated wire mesh[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(4): 563-568. | |
6 | XuS, RenL F, ZhouQ, et al. Facile ZIF-8 functionalized hierarchical micronanofiber membrane for high-efficiency separation of water-in-oil emulsions[J]. Journal of Applied Polymer Science, 2018, 135(27): 46462. |
7 | CoutinhoC D M, ChiuM C, BassoR C, et al. State of art of the application of membrane technology to vegetable oils: a review[J]. Food Research International, 2009, 42(5/6): 536-550. |
8 | PadakiM, MuraliR S, AbdullahM S, et al. Membrane technology enhancement in oil-water separation: a review[J]. Desalination, 2015, 357(357): 197-207. |
9 | KhemakhemM, KhemakhemS, AmarR B. Emulsion separation using hydrophobic grafted ceramic membranes by[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436(35): 402-407. |
10 | RenC, FangH, GuJ Q, et al. Preparation and characterization of hydrophobic alumina planar membranes for water desalination[J]. Journal of the European Ceramic Society, 2015, 35(2): 723-730. |
11 | 李云, 胡浩威. 润湿性对纳米多孔陶瓷膜输运性能的影响[J]. 化工学报, 2017, 68(9): 3474-3481. |
LiY, HuH W. Effect of wettability on nanoporous ceramic membrane for condensate transport performance[J]. CIESC Journal, 2017, 68(9): 3474-3481. | |
12 | KujawaJ, KujawskiW. Functionalization of ceramic metal oxide powders and ceramic membranes by perfluroalkylsilanes and alkylsilanes possessing different reactive groups physicochemical and tribological properties [J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7509-7521. |
13 | KujawaJ, CerneauxS, KujawskiW, et al. Hydrophobic ceramic membranes for water desalination[J]. Applied Sciences, 2017, 7(4): 402. |
14 | GaoN W, FanY Q, QuanX J, et al. Modified ceramic membranes for low fouling separation of water-in-oil emulsions [J]. Journal of Materials Science, 2016, 51(13): 6379-6388. |
15 | AhmadN A, LeoC P, AhmadA L. Superhydrophobic alumina membrane by steam impingement: minimum resistance in microfiltration[J]. Separation and Purification Technology, 2013, 107(4): 187-194. |
16 | ZhangW B, ShiZ, ZhangF, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076. |
17 | BukhariS Z A, HaJ H, LeeJ, et al. Effect of different heat treatments on oxidation-bonded SiC membrane for water filtration[J]. Ceramics International, 2018, 44(12): 14251-14257. |
18 | 代小元, 沈凡, 戴武斌, 等. 碳化硅陶瓷膜处理工业废水的工艺特性研究[J]. 武汉工程大学学报, 2018, 40(3): 284-287. |
DaiX Y, ShenF, DaiW B, et al. Process characteristics of industrial wastewater treatment with silicon carbide ceramic membrane[J]. Journal of Wuhan Institute of Technology, 2018, 40(3): 284-287. | |
19 | De WitP, KappertE J, LohausT, et al. Highly permeable and mechanically robust silicon carbide hollow fiber membranes[J]. Journal of Membrane Science, 2015, 475: 480-487. |
20 | 王新. 集成银丝SiC/PU复合加热膜的制备及性能分析[D]. 天津: 天津工业大学, 2014. |
WangX. Preparation and performance analysis of integrated silver wire SiC/PU composite heating film[D]. Tianjin: Tianjin Polytechnic University, 2014. | |
21 | JacobD S, GedankenA. Effect of reaction parameters on the hydrolysis of tetramethyl orthosilicate and tetraethyl orthosilicate and their surface morphology in an ionic liquid[J]. Journal of the American Ceramic Society, 2010, 91(9): 3024-3030. |
22 | 陈奎, 张天云, 曹秀鸽, 等. γ-(2,3-环氧丙烷)丙基三甲氧基硅烷水解研究[J]. 化工新型材料, 2011, 39(9): 96-108. |
ChenK, ZhangT Y, CaoX G. et al. Hydrolysis study on organic silicon oxygen alkyl GPTMS[J]. New Chemical Materials, 2011, 39(9): 96-108. | |
23 | CiobotaruI A, MajorI, VaireaunD I, et al. The determination of the optimum hydrolysis time for silane films deposition[J]. Applied Surface Science, 2016, 371: 275-280. |
24 | GaberA A, IbrahimD M, Abd-AimohsenF F, et al. Synthesis of alumina, titania, and alumina-titania hydrophobic membranes via sol-gel polymeric route[J]. Journal of Analytical Science and Technology, 2013, 4(1): 4-18. |
25 | FangH, GaoJ F, WangH T, et al. Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process [J]. Journal of Membrane Science, 2012, 403/404(6): 41-46. |
26 | 王煜琨, 韦奇, 张少康, 等. 碳氟基团修饰的多孔陶瓷膜润湿性、表面自由能及渗透性能的研究[J]. 膜科学与技术, 2018, 38(2): 52-59. |
WangY K, WeiQ, ZhangS K, et al. Wettability, surface free energy and permeability of porous ceramic membranes silylated by fluorocarbon groups[J]. Membrane Science and Technology, 2018, 38(2): 52-59. | |
27 | GaoN W, LiM, JingW H, et al. Improving the filtration performance of ZrO2 membrane in non-polar organic solvents by surface hydrophobic modification[J]. Journal of Membrane Science, 2011, 375(1/2): 276-283. |
28 | EkS, RootA, PeussaM, et al. Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results[J]. Thermochimica Acta, 2001, 379(1/2): 201-212. |
29 | KujawaJ, CerneauxS, KujawskiW. Characterization of the surface modification process of Al2O3, TiO2 and ZrO2 powders by PFAS molecules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447(5): 14-22. |
30 | Van OssC J, ChaudhuryM K, GoodR J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems[J]. Chemical Reviews, 1988, 88(6): 927-941. |
31 | DingD, MaoH Y, ChenX F, et al. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions[J]. Journal of Membrane Science, 2018, 565: 303-310. |
32 | WuJ, LingL, XieJ, et al. Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: experimental and theoretical study on the surface interaction[J]. Chemical Physics Letters, 2014, 591: 227-232. |
33 | GaoN W, KeW, FanY Q, et al. Evaluation of the oleophilicity of different alkoxysilane modified ceramic membranes through wetting dynamic measurements[J]. Applied Surface Science, 2013, 283(14): 863-870. |
34 | 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J]. 化工学报, 2017, 68(5): 1899-1905. |
MengQ W, ZhangF, ChenL, et al. Lithium recovery from qarham brine using adsorption-membrane separation hybrid system[J]. CIESC Journal, 2017, 68(5): 1899-1905. | |
35 | CaklJ, BauerI, DolečekP, et al. Effects of backflushing conditions on permeate flux in membrane crossflow microfiltration of oil emulsion[J]. Desalination, 2000, 127(2): 189-198. |
[1] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[2] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[3] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[4] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
[5] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[6] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[7] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[8] | Xianfu CHEN, Dongyu WANG, Yiqun FAN, Weihong XING, Xu QIAO. Research progress of porous ceramic membranes based on 3D printing technologies [J]. CIESC Journal, 2023, 74(1): 105-115. |
[9] | Guojia YU, Dongyu JIN, Zhiyong ZHOU, Fan ZHANG, Zhongqi REN. Advances in the design, synthesis and application of porous liquids [J]. CIESC Journal, 2023, 74(1): 257-275. |
[10] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[11] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
[12] | Chao JI, Wei LIU, Hong QI. Flue gas dehumidification through air cooling enhanced by hydrophobic ceramic membranes [J]. CIESC Journal, 2022, 73(5): 2174-2182. |
[13] | Mengyu LI, Dongxiang WANG, Xiaoyang ZHENG, Guizhuan XU, Chaojun DU, Chun CHANG. Preparation and adsorption properties of crude glycerol bio-based polyurethane material [J]. CIESC Journal, 2022, 73(5): 2270-2278. |
[14] | Zhibin LU, Yimeng LI, Chang HE, Bingjian ZHANG, Qinglin CHEN, Ming PAN. Integrating physics-informed neural networks with partitioned coupling strategy for modeling conjugate heat transfer [J]. CIESC Journal, 2022, 73(12): 5483-5493. |
[15] | Tianyu YANG, Tianshu GE. Effect of desiccant adsorption isotherm on dehumidification performance of desiccant coated heat exchanger [J]. CIESC Journal, 2022, 73(12): 5367-5375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||