CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 311-321.DOI: 10.11949/0438-1157.20190352
Previous Articles Next Articles
Yanbin HOU1(),Xianwen GAO1(),Xiangyu LI2
Received:
2019-04-03
Revised:
2019-06-14
Online:
2019-09-06
Published:
2019-09-06
Contact:
Xianwen GAO
通讯作者:
高宪文
作者简介:
侯延彬(1984—),男,博士研究生,基金资助:
CLC Number:
Yanbin HOU,Xianwen GAO,Xiangyu LI. Prediction for dynamic liquid level of sucker rod pumping using generation of multi-scale state characteristics in oil field production[J]. CIESC Journal, 2019, 70(S2): 311-321.
侯延彬,高宪文,李翔宇. 采油过程多尺度状态特征生成的有杆泵动态液面预测[J]. 化工学报, 2019, 70(S2): 311-321.
Add to citation manager EndNote|Ris|BibTeX
建模数据 来源 | SVR | RBFNN | ELM | |||
---|---|---|---|---|---|---|
MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | |
1#真实数据 | 1.072% | 26.576 | 1.458% | 34.673 | 1.569% | 34.473 |
1#生成数据 | 1.321% | 32.640 | 1.470% | 34.839 | 1.558% | 36.298 |
1#混合数据 | 1.209% | 28.919 | 1.295% | 34.355 | 1.610% | 44.302 |
2#真实数据 | 3.954% | 69.063 | 8.446% | 148.23 | 10.55% | 229.74 |
2#生成数据 | 4.635% | 108.10 | 8.634% | 168.50 | 8.732% | 169.64 |
2#混合数据 | 3.985% | 73.551 | 8.093% | 154.12 | 8.459% | 199.53 |
Table 1 Recognition accuracy prediction of each model with more historical data
建模数据 来源 | SVR | RBFNN | ELM | |||
---|---|---|---|---|---|---|
MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | |
1#真实数据 | 1.072% | 26.576 | 1.458% | 34.673 | 1.569% | 34.473 |
1#生成数据 | 1.321% | 32.640 | 1.470% | 34.839 | 1.558% | 36.298 |
1#混合数据 | 1.209% | 28.919 | 1.295% | 34.355 | 1.610% | 44.302 |
2#真实数据 | 3.954% | 69.063 | 8.446% | 148.23 | 10.55% | 229.74 |
2#生成数据 | 4.635% | 108.10 | 8.634% | 168.50 | 8.732% | 169.64 |
2#混合数据 | 3.985% | 73.551 | 8.093% | 154.12 | 8.459% | 199.53 |
建模数据来源 | SVR | RBFNN | ELM | |||
---|---|---|---|---|---|---|
MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | |
1#真实数据 | 1.072% | 26.576 | 1.458% | 34.673 | 1.569% | 34.473 |
1#混合数据 | 1.589% | 38.954 | 2.871% | 81.781 | 2.521% | 75.997 |
1#少量原始数据 | 1.865% | 42.567 | 3.124% | 96.238 | 2.996% | 89.483 |
2#真实数据 | 3.954% | 69.063 | 8.446% | 148.23 | 10.55% | 229.74 |
2#混合数据 | 6.923% | 156.97 | 9.439% | 166.42 | 11.53% | 259.08 |
2#少量原始数据 | 8.234% | 198.86 | 10.63% | 212.35 | 12.84% | 295.34 |
Table 2 Recognition accuracy prediction of each model with less historical data
建模数据来源 | SVR | RBFNN | ELM | |||
---|---|---|---|---|---|---|
MAPE | RMSE | MAPE | RMSE | MAPE | RMSE | |
1#真实数据 | 1.072% | 26.576 | 1.458% | 34.673 | 1.569% | 34.473 |
1#混合数据 | 1.589% | 38.954 | 2.871% | 81.781 | 2.521% | 75.997 |
1#少量原始数据 | 1.865% | 42.567 | 3.124% | 96.238 | 2.996% | 89.483 |
2#真实数据 | 3.954% | 69.063 | 8.446% | 148.23 | 10.55% | 229.74 |
2#混合数据 | 6.923% | 156.97 | 9.439% | 166.42 | 11.53% | 259.08 |
2#少量原始数据 | 8.234% | 198.86 | 10.63% | 212.35 | 12.84% | 295.34 |
井号 | 最大相对误差/% | 最小相对 误差/% | 平均相对 误差/% | 均方根 误差 |
---|---|---|---|---|
1# | 7.23 | 0.71 | 4.23 | 68.25 |
2# | 8.12 | 1.12 | 5.46 | 88.91 |
3# | 5.21 | 0.45 | 3.21 | 45.21 |
Table 3 Recognition accuracy prediction in oil field production
井号 | 最大相对误差/% | 最小相对 误差/% | 平均相对 误差/% | 均方根 误差 |
---|---|---|---|---|
1# | 7.23 | 0.71 | 4.23 | 68.25 |
2# | 8.12 | 1.12 | 5.46 | 88.91 |
3# | 5.21 | 0.45 | 3.21 | 45.21 |
1 | Jia W , Zhou W , Li T F . A review of dynamic fluid level detection for oil well[J]. Applied Mechanics and Materials, 2014, 456: 582-586. |
2 | Li K , Gao X W , Tian Z D , et al . Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit[J]. Petroleum Science, 2013, 10(1): 73-80. |
3 | Li K , Gao X W , Yang W B , et al . Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA[J]. Petroleum Science, 2013, 10(3): 347-360. |
4 | Lieberman S . Automated continuous fluid level monitoring[C]// SPE Production and Operations Symposium. 2005: 69-86. |
5 | Shao K Y , Yuan M Y , Liu M , et al . Research of oil well dynamic liquid level signal de-noising based on improved wavelet thresholding[J]. Energy Education Science and Technology, 2014, 32(6): 5377-5388. |
6 | Zhou W , Liu J , Gan L Q . Dynamic liquid level detection method based on resonant frequency difference for oil wells[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26(6): 2967-2975. |
7 | Li P , Cai Y L , Shen X L , et al . An accurate detection for dynamic liquid level based on MIMO ultrasonic transducer array[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(3): 582-595. |
8 | 王通, 高宪文, 刘文芳 . 自适应软测量方法在动液面预测中的研究与应用[J]. 化工学报, 2014, 65(12): 4898-4904. |
Wang T , Gao X W , Liu W F . Adaptive soft sensor method and application in determination of dynamic fluid levels[J]. CIESC Journal, 2014, 65(12): 4898-4904. | |
9 | 王通, 高宪文, 刘文芳 . 基于改进即时学习算法的动液面软测量建模[J]. 东北大学学报, 2014, 36(7): 918-922. |
Wang T , Gao X W , Liu W F . Soft sensor for determination of dynamic fluid levels based on enhanced just-in-time learning algorithm[J]. Journal of Northeastern University, 2014, 36(7): 918-922. | |
10 | 李翔宇, 高宪文, 侯延彬 . 基于在线动态高斯过程回归抽油井动液面软测量建模[J]. 化工学报, 2015, 66(6): 2150-2158. |
Li X Y , Gao X W , Hou Y B . Online dynamic Gaussian process regression for dynamic liquid level soft sensing of sucker-rod pumping well[J]. CIESC Journal, 2015, 66(6): 2150-2158. | |
11 | 李翔宇, 高宪文, 李琨, 等 . 基于多源信息特征融合的抽油井动液面集成软测量建模[J]. 化工学报, 2016, 67(6): 2469-2479. |
Li X Y , Gao X W , Li K , et al . Ensemble soft sensor modeling for dynamic liquid level of oil well based on multi-source information feature fusion [J]. CIESC Journal, 2016, 67(6): 2469-2479. | |
12 | Li X Y , Gao X W , Cui Y B , et al . Dynamic liquid level modeling of sucker-rod pumping systems based on Gaussian process regression[C]//International Conference on Natural Computation. 2013: 917-922. |
13 | Wang G F , Zhou Y W , Fei Y W . Application of BP NN in the measurement of dynamic liquid level[J]. Journal of Test and Measurement Technology,2004, 18(1): 5-8. |
14 | Bai S , Jiang Z J , Wang T , et al . Application of online SVR on the dynamic liquid level soft sensing[C]//Chinese Control and Decision Conference. 2013: 25-27. |
15 | Li K , Han Y . Modelling for motor load torque with dynamic load changes of beam pumping units based on a serial hybrid model[J]. Transactions of the Institute of Measurement and Control, 2018, 40(3): 903-917. |
16 | Li K , Han Y . Soft sensor for dynamic fluid level of beam pump unit based on multiple LS-SVM models[C]//International Conference on Mechatronics and Control. 2014: 2340-2345. |
17 | Wang T , Lai H Z , Jiang Z J . An algorithm study for determination of dynamic fluid level based on the state space reconstruction and BH-LSSVM[C]//International Conference on Mechatronics and Control. 2014: 132-136. |
18 | Goodfellow I J , Pouget-Abadie J , Mirza M , et al . Generative adversarial nets[C]//28th Conference on Neural Information Processing Systems. 2014: 2672-2680. |
19 | Li J , Skinner K , Eustice R , et al . WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 387-394. |
20 | Kumar A , Sattigeri P , Fletcher P T . Semi-supervised learning with GANs manifold invariance with improved inference[C]//31st Conference on Neural Information Processing Systems. 2017. |
21 | Madani A , Moradi M , Karargyris A . Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation[C]// 15th IEEE International Symposium on Biomedical Imaging. 2018. |
22 | Tu Y , Lin Y , Wang J . Semi-supervised learning with generative adversarial networks on digital signal modulation classification[J]. CMC-Computers Materials & Continua, 2018, 55(2): 243-254. |
23 | He Z , Liu H , Wang Y W , et al . Generative adversarial networks-based semi-supervised learning for hyperspectral image classification[J]. Remote Sensing, 2017, 9(10):1042. |
24 | Guo J Y , Lei B , Ding C B , et al . Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111-1115. |
25 | Yuki S , Shinnosuke T , Hiroshi S . Statistical parametric speech synthesis incorporating generative adversarial networks[J]. IEEE/ACM Transaction on Audio, Speech and Language Processing, 2018, 26(1): 84-96. |
26 | Xuan Q , Chen Z Z , Liu Y , et al . Multiview generative adversarial network and its application in pearl classification[J]. IEEE Transactions on Industrial Electronics, 2019, 6(10): 8244-8252. |
27 | Drucker H , Burges C J C , Kaufman L , et al . Support vector regression machines[C]//10th Annual Conference on Neural Information Processing Systems. 1996: 155-161. |
28 | Bianchini M , Frasconi P , Gori M . Learning without local minima in radial basis function networks[J]. IEEE transaction on Neural Networks,1995, 6(3): 749-756. |
29 | Huang G B , Zhu Q Y , Siew C K . Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70: 489-501. |
30 | Hou Y B , Gao X W , Wang M S , et al . Application of dynamic liquid level prediction model based on improved SVR in sucker rod pump oil wells[C]//32nd Chinese Control Conference. 2013: 7826-7830. |
31 | 高宪文, 王明顺, 刘占广, 等 . 一种有杆泵抽油井井下动态液位软测量方法: 201310029549[P]. 2015-07-15. |
Gao X W , Wang M S , Liu Z G , et al . Soft measuring method of dynamic liquid level under sucker rod oil well: 201310029549[P]. 2015-07-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||