[1] |
周传典. 高炉炼铁生产技术手册[M]. 北京: 冶金工业出版社, 2002. ZHOU C D. The Technical Manual of Blast Furnace Ironmaking[M]. Beijing: Metallurgical Industry Press, 2002.
|
[2] |
PEACEY J G, DAVENPORT W G. The Iron Blast Furnace: Theory and Practice[M]. Holland: Elsevier, 2013.
|
[3] |
李洋龙, 程树森. 铜冷却壁冷却恢复技术的传热过程[J]. 钢铁研究学报, 2012, 24 (7): 5-9. LI Y L, CHENG S S. Cooling capacity recovery of copper stave based on heat transfer[J]. Journal of Iron and Steel Research, 2012, 24 (7): 5-9.
|
[4] |
代兵, 张建良, 姜喆, 等. 高炉铸铜冷却壁热面状况计算模型的开发与实践[J]. 冶金自动化, 2012, 36 (5): 37-41. DAI B, ZHANG J L, JIANG Z, et al. Development and practice of cast copper cooling stave hot surface status calculation model of blast furnace[J]. Metallurgical Industry Automation, 2012, 36 (5): 37-41.
|
[5] |
赵宏博, 程树森, 霍守锋. 高炉炉缸炉底温度场及异常侵蚀在线监测诊断系统[J]. 钢铁, 2010, (5): 11-16. ZHAO H B, CHENG S S, HUO S F. On-line monitoring system for temperature field and abnormal erosion of bf hearth and bottom[J]. Iron and Steel, 2010, (5): 11-16.
|
[6] |
吴俐俊, 孙国平, 陆祖安. 热面局部高温下高炉冷却壁智能监测试验研究[J]. 钢铁, 2011, 46 (5): 11-14. WU L J, SUN G P, LU Z A. Experiment study on intelligent prediction of blast furnace stave on the surface with local high temperature[J]. Iron and Steel, 2011, 46 (5): 11-14.
|
[7] |
AN J Q, WU M, HE Y. A temperature field detection system for blast furnace based on multi-source information fusion[J]. Intelligent Automation & Soft Computing, 2013, 19 (4): 625-634.
|
[8] |
安剑奇, 吴敏, 何勇, 等. 基于多源信息可信度的高炉料面温度检测方法[J]. 上海交通大学学报, 2012, 46 (12): 1945-1950. AN J Q, WU M, HE Y, et al. Temperature detection method of blast furnace surface based on the reliability of multi-source information[J]. Journal of Shanghai Jiaotong University, 2012, 46 (12): 1945-1950.
|
[9] |
SAXEN H, GAO C, GAO Z. Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—a review[J]. Industrial Informatics, IEEE Transactions on, 2013, 9 (4): 2213-2225.
|
[10] |
张向宇, 郑树, 周怀春, 等. 基于热辐射成像建模求解的管式炉炉管温度检测[J]. 化工学报, 2015, 66 (3): 965-971. DOI: 10.11949/j.issn.0438-1157.20141478. ZHANG X Y, ZHENG S, ZHOU H C, et al. Visualization of pipe temperature distribution in tubular furnace based on radiation imaging model solving[J]. CIESC Journal, 2015, 66 (3): 965-971. DOI: 10.11949/j.issn.0438-1157.20141478.
|
[11] |
WU M, LEI Q, CAO W, et al. Integrated soft sensing of coke-oven temperature[J]. Control Engineering Practice, 2011, 19 (10): 1116-1125.
|
[12] |
TIAN H X, MAO Z Z. An ensemble elm based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace[J]. Automation Science and Engineering, IEEE Transactions on, 2010, 7 (1): 73-80.
|
[13] |
鄂加强, 王耀南, 梅炽. 铜精炼过程铜液温度软测量模型及应用[J]. 化工学报, 2006, 57 (1): 203-209. E J Q, WANG Y N, MEI C. Soft-sensing model of copper liquid temperature in copper refining process and its application[J]. Journal of Chemical Industry and Engineering (China), 2006, 57 (1): 203-209.
|
[14] |
KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor data fusion: a review of the state-of-the-art[J]. Information Fusion, 2013, 14 (1): 28-44.
|
[15] |
AZIZ A M. A new multiple decisions fusion rule for targets detection in multiple sensors distributed detection systems with data fusion[J]. Information Fusion, 2014, 18: 175-186.
|
[16] |
NIU G, YANG B S, PECHT M. Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance[J]. Reliability Engineering & System Safety, 2010, 95 (7): 786-796.
|
[17] |
侯彦东, 陈志国, 汤天浩. 多传感器故障检测与隔离算法[J]. 化工学报, 2010, 61 (8): 2008-2014. HOU Y D, CHEN Z G, TANG T H. Multi-sensor fault detection and isolation algorithm[J]. CIESC Journal, 2010, 61 (8): 2008-2014.
|
[18] |
安剑奇, 陈易斐, 吴敏. 基于改进支持向量机的高炉一氧化碳利用率预测方法[J]. 化工学报, 2015, 66 (1): 206-214. DOI: 10.11949/j.issn.0438-1157.20141482. AN J Q, CHEN Y F, WU M. A prediction method for carbon monoxide utilization ratio of blast furnace based on improved support vector regression[J]. CIESC Journal, 2015, 66 (1): 206-214. DOI: 10.11949/j.issn.0438-1157.20141482.
|
[19] |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518-1524.
|