1 |
Anna S L. Droplets and bubbles in microfluidic devices [J]. Annual Review of Fluid Mechanics, 2016, 48(1): 285-309.
|
2 |
邓楠楠, 汪伟, 巨晓洁, 等. 微流控技术操控微尺度液滴及其聚并的研究进展 [J]. 中国科学: 化学, 2015, 45(1): 7-15.
|
|
Deng N N, Wang W, Ju X J, et al. Recent advances in microfluidic manipulation and coalescence of microscale droplets [J]. Scientia Sinica Chimica, 2015, 45(1): 7-15.
|
3 |
骆广生, 王凯, 王佩坚, 等. 微反应器内聚合物合成研究进展 [J]. 化工学报, 2014, 65(7): 2563-2573.
|
|
Luo G S, Wang K, Wang P J, et al. Advances in polymer synthesis in microreactors [J]. CIESC Journal, 2014, 65(7): 2563-2573.
|
4 |
Eggers J, Villermaux E.Physics of liquid jets [J]. Reports on Progress in Physics, 2008, 71(3): 036601.
|
5 |
Driessen T, Jeurissen R, Wijshoff H, et al. Stability of viscous long liquid filaments [J]. Physics of Fluids, 2013, 25(6): 062109.
|
6 |
Du W, Fu T, Zhang Q, et al. Breakup dynamics for droplet formation in a flow-focusing device: rupture position of viscoelastic thread from matrix [J]. Chemical Engineering Science, 2016, 153: 255-269.
|
7 |
Sun X, Zhu C, Fu T, et al. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction [J]. Chemical Engineering Science, 2018, 188: 158-169.
|
8 |
Notz P K, Chen A U, Basaran O A. Satellite drops: unexpected dynamics and change of scaling during pinch-off [J]. Physics of Fluids, 2001, 13(3): 549-552.
|
9 |
Dallaston M C, Fontelos M A, Tseluiko D, et al. Discrete self-similarity in interfacial hydrodynamics and the formation of iterated structures [J]. Physical Review Letters, 2018, 120(3): 034505.
|
10 |
Tjahjadi M, Stone H A, Ottino J M. Satellite and subsatellite formation in capillary breakup [J]. Journal of Fluid Mechanics, 1992, 243: 297-317.
|
11 |
Eggers J. Nonlinear dynamics and breakup of free-surface flows [J]. Reviews of Modern Physics, 1997, 69(3): 865-929.
|
12 |
Stone H A, Bentley B J, Leal L G. An experimental study of transient effects in the breakup of viscous drops [J]. Journal of Fluid Mechanics, 1986, 173: 131-158.
|
13 |
Rayleigh L. On the capillary phenomena of jets [J]. Proceedings of the Royal Society of London, 1879, 29(196/197/198/199): 71-97.
|
14 |
Taylor G I. The formation of emulsions in definable fields of flow [J]. Proceedings of the Royal Society of London. Series A, 1934, 146(858): 501-523.
|
15 |
Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid [J]. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 1935, 150(870): 322-337.
|
16 |
Du W, Fu T, Zhu C, et al. Breakup dynamics for high-viscosity droplet formation in a flow-focusing device: symmetrical and asymmetrical ruptures [J]. AIChE Journal, 2016, 62(1): 325-337.
|
17 |
Kovalchuk N M, Jenkinson H, Miller R, et al. Effect of soluble surfactants on pinch-off of moderately viscous drops and satellite size [J]. Journal of Colloid and Interface Science, 2018, 516: 182-191.
|
18 |
Ponce-Torres A, Montanero J M, Herrada M A, et al. Influence of the surface viscosity on the breakup of a surfactant-laden drop [J]. Physical Review Letters, 2017, 118(2): 024501.
|
19 |
Du Z, Lin Y, Xing R, et al. Controlling the polymer ink s rheological properties and viscoelasticity to suppress satellite droplets[J]. Polymer, 2018, 138: 75-82.
|
20 |
Janssen P J A, Meijer H E H, Anderson P D. Stability and breakup of confined threads [J]. Physics of Fluids, 2012, 24(1): 012102.
|
21 |
Du W, Fu T, Zhang Q, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices [J]. AIChE Journal, 2017, 63(11): 5196-5206.
|
22 |
Medhi B J, Agrawal V, Singh A. Experimental investigation of particle migration in suspension flow through bifurcating microchannels [J]. AIChE Journal, 2018, 64(6): 2293-2307.
|
23 |
Segre G, Silberberg A. Radial particle displacements in poiseuille flow of suspensions [J]. Nature, 1961, 189(4760): 209-210.
|
24 |
Di Carlo D, Edd J F, Humphry K J, et al. Particle segregation and dynamics in confined flows [J]. Physical Review Letters, 2009, 102(9): 094503.
|
25 |
Stan C A, Guglielmini L, Ellerbee A K, et al. Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels [J]. Physical Review E, 2011, 84(3): 036302.
|
26 |
Amini H, Lee W, Di Carlo D. Inertial microfluidic physics [J]. Lab on a Chip, 2014, 14(15): 2739-2761.
|
27 |
Di Carlo D. Inertial microfluidics [J]. Lab on a Chip, 2009, 9(21): 3038-3046.
|
28 |
Yuan D, Zhao Q, Yan S, et al. Recent progress of particle migration in viscoelastic fluids [J]. Lab on a Chip, 2018, 18: 551-567.
|
29 |
Matsunaga D, Meng F, Zöttl A, et al. Focusing and sorting of ellipsoidal magnetic particles in microchannels [J]. Physical Review Letters, 2017, 119(19): 198002.
|
30 |
Hung S H, Lin Y H, Lee G B. A microfluidic platform for manipulation and separation of oil-in-water emulsion droplets using optically induced dielectrophoresis [J]. Journal of Micromechanics and Microengineering, 2010, 20(4): 045026.
|
31 |
Yang C H, Lin Y S, Huang K S, et al. Microfluidic emulsification and sorting assisted preparation of monodisperse chitosan microparticles [J]. Lab on a Chip, 2009, 9(1): 145-150.
|
32 |
Huang K S, Lin Y S, Yang C H, et al. In situ synthesis of twin monodispersed alginate microparticles [J]. Soft Matter, 2011, 7(14): 6713-6718.
|
33 |
Tan Y C, Fisher J S, Lee A I, et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting [J]. Lab on a Chip, 2004, 4(4): 292-298.
|
34 |
Tan Y C, Lee A P. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system [J]. Lab on a Chip, 2005, 5(10): 1178-1183.
|
35 |
Tottori N, Hatsuzawa T, Nisisako T. Separation of main and satellite droplets in a deterministic lateral displacement microfluidic device [J]. RSC Advances, 2017, 7(56): 35516-35524.
|
36 |
McGrath J, Jimenez M, Bridle H. Deterministic lateral displacement for particle separation: a review [J]. Lab on a Chip, 2014, 14(21): 4139-4158.
|
37 |
Tottori N, Nisisako T. High-throughput production of satellite-free droplets through a parallelized microfluidic deterministic lateral displacement device [J]. Sensors and Actuators B: Chemical, 2018, 260: 918-926.
|
38 |
Zhang J, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review [J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8(1): 285-305.
|
39 |
赵玉潮, 陈光文. 微化工系统的并行放大研究进展 [J]. 中国科学: 化学, 2015, 45(1): 16-23.
|
|
Zhao Y C, Chen G W. Progress in research on numbering-up of microchemical system [J]. Scientia Sinica Chimica, 2015, 45(1): 16-23.
|