1 |
Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869.
|
2 |
Kockmann N. Modular equipment for chemical process development and small-scale production in multipurpose plants[J]. Chembioeng Reviews, 2016, 3(1): 5-15.
|
3 |
Rossetti I, Compagnoni M. Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: flow chemistry[J]. Chemical Engineering Journal, 2016, 296: 56-70.
|
4 |
Wang K, Luo G. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33.
|
5 |
Kjeang E, Djilali N, Sinton D. Microfluidic fuel cells: a review[J]. Journal of Power Sources, 2009, 186(2): 353-369.
|
6 |
Anna S L. Droplets and bubbles in microfluidic devices[J]. Annual Review of Fluid Mechanics, 2016, 48: 285-309.
|
7 |
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75.
|
8 |
Koster S. Microfluidics—from fundamental research to industrial applications[J]. Journal of Physics D: Applied Physics, 2013, 46: 110301.
|
9 |
Yamada K, Henares T G, Suzuki K, et al. Paper-based inkjet-printed microfluidic analytical devices[J]. Angewandte Chemie International Edition, 2015, 54(18): 5294-5310.
|
10 |
Shui L, Hayes R A, Jin M, et al. Microfluidics for electronic paper-like displays[J]. Lab on a Chip, 2014, 14(14): 2374-2384.
|
11 |
Waheed S, Cabot Canyelles J, Macdonald N, et al. 3D printed microfluidic devices: enablers and barriers[J]. Lab on a Chip, 2016, 16(11): 1993-2013.
|
12 |
Wang K, Li L, Xie P, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 611-627.
|
13 |
Wang J, Song Y. Microfluidic synthesis of nanohybrids[J]. Small, 2017, 13: 160408418.
|
14 |
Kim H U, Choi D G, Roh Y H, et al. Microfluidic synthesis of pH-sensitive multicompartmental microparticles for multimodulated drug release[J]. Small, 2016, 12(25): 3463-3470.
|
15 |
Atobe M, Tateno H, Matsumura Y. Applications of flow microreactors in electrosynthetic processes[J]. Chemical Reviews, 2018, 118: 4541-4572
|
16 |
Yao C, Liu Y, Xu C, et al. Formation of liquid-liquid slug flow in a microfluidic T-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2018, 64(1): 346-357.
|
17 |
Li Y K, Wang K, Xu J H, et al. A capillary-assembled micro-device for monodispersed small bubble and droplet generation[J]. Chemical Engineering Journal, 2016, 293: 182-188.
|
18 |
Li Z, Mak S Y, Sauret A, et al. Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy[J]. Lab on a Chip, 2014, 14(4): 744-749.
|
19 |
Saqib M, Sahinoglu O B, Erdem E Y. Alternating droplet formation by using tapered channel geometry[J]. Scientific Reports, 2018, 8: 1606.
|
20 |
Wu Z, Cao Z, Sundén B. Liquid-liquid flow patterns and slug hydrodynamics in square microchannels of cross-shaped junctions[J]. Chemical Engineering Science, 2017, 174: 56-66.
|
21 |
Galindo-Rosales F J, Alves M A, Oliveira M. Microdevices for extensional rheometry of low viscosity elastic liquids: a review[J]. Microfluidics and Nanofluidics, 2013, 14(1/2): 1-19.
|
22 |
Seemann R, Brinkmann M, Pfohl T, et al. Droplet based microfluidics[J]. Reports on Progress in Physics, 2012, 75: 0166011.
|
23 |
Wei W, Guo S, Wu F, et al. Image processing-based measurement of volume for droplets in the microfluidic system[C]// Complex Medical Engineering (CME), 2013 ICME International Conference on. IEEE, 2013: 518-522.
|
24 |
Basu A S. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters[J]. Lab on a Chip, 2013, 13(10): 1892-1901.
|
25 |
Xu K, Tostado C P, Xu J H, et al. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device[J]. Lab on a Chip, 2014, 14(7): 1357-1366.
|
26 |
Liu Z, Cao R, Pang Y, et al. The influence of channel intersection angle on droplets coalescence process[J]. Experiments in Fluids, 2015, 56(2): 24.
|
27 |
Wu Y, Fu T, Zhu C, et al. Bubble coalescence at a microfluidic T-junction convergence: from colliding to squeezing[J]. Microfluidics and Nanofluidics, 2014, 16(1/2): 275-286.
|
28 |
王凯, 易诗婷, 周倩倩, 等. 微通道内纳米颗粒对液滴聚并的影响规律[J]. 化工学报, 2016, 67(2): 469-475.
|
|
Wang K, Yi S T, Zhou Q Q, et al. Effect of nano-particles on droplet coalescence in microchannel device[J]. CIESC Journal, 2016, 67(2): 469-475.
|
29 |
Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169(SI): 18-33.
|
30 |
Zhou Q Q, Sun Y, Yi S T, et al. Investigation of droplet coalescence in nanoparticle suspensions by a microfluidic collision experiment[J]. Soft Matter, 2016, 12(6): 1674-1682.
|