CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1510-1519.DOI: 10.11949/0438-1157.20191331
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Qi CHEN1(),Jingkun LI1,Yu SONG2,Qian HE1,Christopher David M2,Xuefang LI1()
Received:
2019-11-04
Revised:
2020-01-09
Online:
2020-04-05
Published:
2020-04-05
Contact:
Xuefang LI
通讯作者:
李雪芳
作者简介:
陈琦(1995—),男,硕士研究生,基金资助:
CLC Number:
Qi CHEN, Jingkun LI, Yu SONG, Qian HE, Christopher David M, Xuefang LI. Newtonian droplet generation in shear-thinning fluids in flow-focusing microchannel[J]. CIESC Journal, 2020, 71(4): 1510-1519.
陈琦, 李京坤, 宋昱, 何倩, 李雪芳. 流动聚焦微通道内牛顿微液滴在幂律剪切致稀流体中的生成研究[J]. 化工学报, 2020, 71(4): 1510-1519.
Add to citation manager EndNote|Ris|BibTeX
项 | 表达式 | 离散格式 |
---|---|---|
ddt | CrankNicolson 1 | |
div | Gauss linear Upwind grad(U) | |
Gauss Interface Compression | ||
grad | Gauss linear | |
snGrad | corrected | |
Laplacian | Gauss linear corrected | |
interpolation | linear |
Table 1 Discretization schemes for different terms of governing equations
项 | 表达式 | 离散格式 |
---|---|---|
ddt | CrankNicolson 1 | |
div | Gauss linear Upwind grad(U) | |
Gauss Interface Compression | ||
grad | Gauss linear | |
snGrad | corrected | |
Laplacian | Gauss linear corrected | |
interpolation | linear |
流体 | 密度/(kg/m3) | K/(Pa·sn) | n | 界面张力/(mN/m) |
---|---|---|---|---|
离散相 | 920 | 0.011 | 1 | 29.1 |
连续相 | 1000 | 0.2~0.7 | 0.3~1 |
Table 2 Physical properties of two phases
流体 | 密度/(kg/m3) | K/(Pa·sn) | n | 界面张力/(mN/m) |
---|---|---|---|---|
离散相 | 920 | 0.011 | 1 | 29.1 |
连续相 | 1000 | 0.2~0.7 | 0.3~1 |
1 | 闫嘉航, 赵磊, 申少斐, 等. 液滴微流控技术在生物医学中的应用进展[J]. 分析化学, 2016, 44(4): 562-568. |
Yan J H, Zhao L, Shen S F, et al. Progress in application of droplet microfluidic technology in biomedicine[J]. Chinese Journal of Analytical Chemistry, 2016, 44(4): 562-568. | |
2 | Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
3 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
4 | Garstecki P, Gitlin I, Diluzio W, et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device[J]. Applied Physics Letters, 2004, 85(13): 2649-2651. |
5 | Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351. |
6 | Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid[J]. Chemical Engineering Science, 2004, 59(15): 3045-3058. |
7 | Xu J H, Luo G S, Li S W, et al. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties[J]. Lab on a Chip, 2006, 6(1): 131-136. |
8 | Xu J H, Li S W, Tan J, et al. Preparation of highly monodisperse droplet in a T-junction microfluidic device[J]. AIChE Journal, 2006, 52(9): 3005-3010. |
9 | Xu J H, Li S W, Tan J, et al. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006, 22(19): 7943-7946. |
10 | Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing”in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366. |
11 | Fu T T, Ma Y G, Funfschilling D, et al. Breakup dynamics of slender bubbles in non-Newtonian fluids in microfluidic flow-focusing devices[J]. AIChE Journal, 2012, 58(11): 3560-3567. |
12 | Rostami B, Morini G L. Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low capillary numbers[J]. Experimental Thermal and Fluid Science, 2019, 103: 191-200. |
13 | 张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504-511. |
Zhang Q D, Fu T T, Zhu C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504-511. | |
14 | Sontti S G, Atta A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal, 2017, 330: 245-261. |
15 | Shi Y, Tang G H. Lattice Boltzmann simulation of droplet formation in non-Newtonian fluids[J]. Communications in Computational Physics, 2015, 17(4): 1056-1072. |
16 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
17 | Greenshields C J. OpenFOAM user guide version 6[EB/OL]. [2019-11-01]. . |
18 | Ubbink O. Numerical prediction of two fluid systems with sharp interfaces[D]. London: University of London and Imperial College, 1997. |
19 | Berberovic E. Investigation of free-surface flow associated with drop impact: numerical simulations and theoretical modeling[D]. Darmstadt: Technische Universitat Darmstadt, 2010. |
20 | Weller H G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow[R]. Caversham, United Kingdom, 2008. |
21 | Youngs D L. Time-dependent multi-material flow with large fluid distortion[M]//Morton K W, Baines M J. Numerical Method for Fluid Dynamics. New York: Academic Press, 1982: 273-285. |
22 | Nguyen N T, Wereley S T. Fundamentals and Applications of Microfluidics[M]. 2nd ed. Norwood: Artech House Inc., 2006: 36. |
23 | Fu T T, Wu Y, Ma Y G, et al. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting[J]. Chemical Engineering Science, 2012, 84: 207-217. |
24 | Fu T T, Carrier O, Funfschilling D, et al. Newtonian and non-Newtonian flows in microchannels: inline rheological characterization[J]. Chemical Engineering & Technology, 2016, 39(5): 987-992. |
25 | Lindner A, Bonn D, Meunier J. Viscous fingering in a shear-thinning fluid[J]. Physics of Fluids, 2000, 12(2): 256-261. |
26 | Fu T T, Ma Y G, Li H Z. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device[J]. Chemical Engineering Science, 2016, 144: 75-86. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[4] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[5] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[6] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[7] | Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964. |
[8] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[9] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[10] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[11] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[12] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[13] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[14] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
[15] | Mengxi LIU, Yiping FAN, Zihan YAN, Xiuying YAO, Chunxi LU. Regulation and industrial application of gas jet hydrodynamic behavior in a feedstock injection zone of a riser [J]. CIESC Journal, 2022, 73(6): 2496-2513. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||