CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1502-1509.DOI: 10.11949/0438-1157.20190982
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xinyu YAO(),Xiao CHENG,Han WANG,Hong SHEN,Huiying WU,Zhenyu LIU(
)
Received:
2019-08-30
Revised:
2020-01-04
Online:
2020-04-05
Published:
2020-04-05
Contact:
Zhenyu LIU
通讯作者:
刘振宇
作者简介:
姚鑫宇(1994—),男,硕士研究生, 基金资助:
CLC Number:
Xinyu YAO, Xiao CHENG, Han WANG, Hong SHEN, Huiying WU, Zhenyu LIU. Experimental investigation on flow boiling heat transfer in sinusoidal wavy copper microchannels[J]. CIESC Journal, 2020, 71(4): 1502-1509.
姚鑫宇, 程潇, 王晗, 沈洪, 吴慧英, 刘振宇. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502-1509.
Parameter | Error/% |
---|---|
T | 0.81 |
3.26 | |
G | 2.84 |
h | 3.92 |
6.41 |
Table 1 Experimental error
Parameter | Error/% |
---|---|
T | 0.81 |
3.26 | |
G | 2.84 |
h | 3.92 |
6.41 |
1 | Hoefflinger B. ITRS: The International Technology Roadmap for Semiconductors[M]. Springer, 2011. |
2 | Sun B, Liu H F. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator[J]. Appl. Therm. Eng., 2017, 115: 435-443. |
3 | Ramos-Alvarado B, Li P W, Liu H, et al. CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells[J]. Appl. Therm. Eng., 2011, 31: 2494-2507. |
4 | Gao F, Blunier B, Miraoui A. Proton exchange membrane fuel cell multi-physical dynamics and stack spatial non-homogeneity analyses[J]. J. Power Sources, 2010, 195: 7609-7626. |
5 | Datta M, Choi H W. Microheat exchanger for cooling high power laser diodes[J]. Appl. Therm. Eng., 2015, 90: 266-273. |
6 | Yang B, Wang P, Bar-Cohen A. Mini-contact enhanced thermoelectric cooling of hot spots in high power devices[J]. IEEE Trans. Compon. Packag. Technol., 2007, 30(3): 432-438. |
7 | Nnanna A A, Rutherford W, Elomar W, et al. Assessment of thermoelectric module with nanofluid heat exchanger[J]. Appl. Therm. Eng., 2009, 29(2/3): 491-500. |
8 | Karayiannis T G, Mahmoud M M. Flow boiling in microchannels: fundamentals and applications[J]. Appl. Therm. Eng., 2017, 115: 1372-1397. |
9 | 郭兆阳, 徐鹏, 王元华, 等. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12): 3798-3804. |
Guo Z Y, Xu P, Wang Y H, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12): 3798-3804. | |
10 | Jaikumar A, Kandlikar S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. Int. J. Heat Mass Transfer, 2015, 88: 652-661. |
11 | 程云, 李菊香, 莫光东. 水在开孔泡沫铜中的池沸腾传热特性[J]. 化工学报, 2013, 64(4): 1231-1235. |
Cheng Y, Li J X, Mo G D. Pool boiling heat transfer in porous copper foam[J]. CIESC Journal, 2013, 64(4): 1231-1235. | |
12 | Sujith K C S, Suresh S, Aneesh C R, et al. Flow boiling heat transfer enhancement on copper surface using Fe doped Al2O3-TiO2 composite coatings[J]. Appl. Surf. Sci., 2015, 334: 102-109. |
13 | 杨冬, 李永星, 陈听宽, 等.多孔表面管内高沸点工质的强化流动沸腾换热与阻力特性[J]. 化工学报, 2004, 55(10): 1631-1637. |
Yang D, Li Y X, Chen T K, et al. Enhanced flow boiling heat transfer of high saturation temperature organic fluid in vertical porous tube[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(10): 1631-1637. | |
14 | 徐法尧, 吴慧英. 可压缩容积对内肋阵列微通道流动沸腾不稳定性影响[J]. 科学通报, 2017, 62: 312-319. |
Xu F Y, Wu H Y. Effect of compressible volume on flow boiling instability of water in the pin-fin microchannel[J]. Chin. Sci. Bull., 2017, 62: 312-319. | |
15 | 杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989. |
Du B Z, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989. | |
16 | Shen H, Zhang Y C, Wang C C, et al. Comparative study for convective heat transfer of counter-flow wavy double-layer microchannel heat sinks in staggered arrangement[J]. Appl. Therm. Eng., 2018, 137: 228-237. |
17 | Lin L, Zhao J, Lu G, et al. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude[J]. Int. J. Therm. Sci., 2017, 118: 423-434. |
18 | Rosaguti N R, Fletcher D F, Haynes B S. Low-Reynolds number heat transfer enhancement in sinusoidal channels[J]. Chem. Eng. Sci., 2007, 62(3): 694-702. |
19 | Zhou J, Hatami M, Song D, et al. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods[J]. Int. J. Heat Mass Transfer, 2016, 103: 715-724. |
20 | Metwally H, Manglik R M. Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels[J]. Int. J. Heat Mass Transfer, 2004, 47(10/11): 2283-2292. |
21 | Sui Y, Teo C, Lee P S, et al. Fluid flow and heat transfer in wavy microchannels[J]. Int. J. Heat Mass Transfer, 2010, 53(13/14): 2760-2772. |
22 | Sui Y, Lee P, Teo C. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section[J]. Int. J. Therm. Sci., 2011, 50(12): 2473-2482. |
23 | Rush T, Newell T, Jacobi A. An experimental study of flow and heat transfer in sinusoidal wavy passages[J]. Int. J. Heat Mass Transfer, 1999, 42(9): 1541-1553. |
24 | Huang H X, Wu H Y, Zhang C. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels[J]. J. Micromech. Microeng., 2018, 28: 055003. |
25 | Khoshvaght-Aliabadi M, Sahamiyan M, Hesampour M, et al. Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink[J]. Appl. Therm. Eng., 2016, 92: 50-61. |
26 | Tiwari N, Moharana M. Two-phase flow conjugate heat transfer in wavy microchannel[C]//ASME 16th International Conference on Nanochannels, Microchannels, and Minichannels. 2018: V001T02A017. |
27 | Xia G D, Tang Y X, Zong L X, et al. Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall[J]. Int. Commun. Heat Mass Transfer, 2019, 101: 89-102. |
28 | Deng D X, Chen X L, Chen L, et al. Preparation of porous structures on copper microchannel surfaces by laser writing[J]. Sci. China: Technol. Sci., 2019, 62: 1-10. |
29 | 刘巍, 朱春玲. 分流板结构对微通道平行流蒸发器性能的影响[J]. 化工学报, 2012, 63(3): 761-766. |
Liu W, Zhu C L. Effects of deflector structure on performance of micro-channel evaporator with parallel flow[J]. CIESC Journal, 2012, 63(3): 761-766. | |
30 | Moffat R J. Describing the uncertainties in experimental results[J]. Exp. Therm. Fluid Sci., 1988, 1: 3-17. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[3] | Pei ZHOU, Xiuping ZHANG, Jingchun TANG, Lei YANG, Bin YE, Ronghua HUANG. Experimental and theoretical study on bubble lift-off diameter in subcooled flow boiling [J]. CIESC Journal, 2022, 73(1): 194-203. |
[4] | KUANG Yiwu, SUN Lijie, WANG Wen, ZHUAN Rui, ZHANG Liang. Numerical investigation of hydrogen flow boiling based on two-fluid model [J]. CIESC Journal, 2021, 72(S1): 184-193. |
[5] | Yaxin ZHAO,Zhancheng LAI,Haitao HU. Flow boiling heat transfer and pressure drop characteristics of R1234ze(E) in metal foam filled tubes [J]. CIESC Journal, 2021, 72(10): 5074-5081. |
[6] | Kuan YANG, Changqi YAN, Xiaxin CAO. Subcooled flow boiling resistance characteristics in narrow rectangular channel under natural circulation condition [J]. CIESC Journal, 2020, 71(7): 3060-3070. |
[7] | Zhongyan LIU, Dahan SUN, Xu JIN, Tianhao WANG, Yitai MA. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64. |
[8] | WANG Haoxian, LI Jianrui, HU Haitao, DING Guoliang, WU Chunlin, CHEN Hui, XING Zhanyang. Analysis of influence of surging on heat transfer characteristics of liquified natural gas flow boiling in channel of plate-fin heat exchanger [J]. CIESC Journal, 2018, 69(S2): 101-108. |
[9] | JIANG Linlin, LIU Jianhua, ZHANG Liang, ZHAO Yue. Flow boiling heat transfer characteristics of CO2 in horizontal micro-tube [J]. CIESC Journal, 2018, 69(4): 1428-1436. |
[10] | JIANG Linlin, LIU Jianhua, ZHANG Liang, ZHAO Yue. Flow boiling pressure drop characteristics of CO2 in horizontal micro tube [J]. CIESC Journal, 2017, 68(12): 4576-4584. |
[11] | ZHAO Ran, WU Xiaomin, HUANG Xiujie. Numerical simulation on flow boiling heat transfer of R32 in micro/mini-channels [J]. CIESC Journal, 2016, 67(S1): 33-39. |
[12] | QIU Jinyou, ZHANG Hua, YU Xiaoming, WANG Xi, WU Yinlong. Flow boiling heat transfer characteristic of refrigerant R1234ze(E) in horizontal circular tube [J]. CIESC Journal, 2016, 67(6): 2255-2262. |
[13] | WEI Jinjia, ZHANG Yonghai. Review of enhanced boiling heat transfer over micro-pin-finned surfaces [J]. CIESC Journal, 2016, 67(1): 97-108. |
[14] | XU Bin, SHI Yumei. Investigation on heat transfer characteristics during flow boiling of liquid natural gas in vertical micro-fin tube [J]. CIESC Journal, 2015, 66(S2): 66-75. |
[15] | CHEN Dongsheng, SHI Yumei. Flow boiling heat transfer of LNG in vertical smooth tube at 0.5 Mpa [J]. CIESC Journal, 2014, 65(4): 1199-1207. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 275
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 549
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||