CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2780-2787.DOI: 10.11949/0438-1157.20191416
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jinman YANG(),Xingwang ZHU,Guli ZHOU,Hui XU(),Huaming LI
Received:
2019-11-25
Revised:
2020-02-22
Online:
2020-06-05
Published:
2020-06-05
Contact:
Hui XU
通讯作者:
许晖
作者简介:
杨金曼(1994—),女,博士研究生,基金资助:
CLC Number:
Jinman YANG, Xingwang ZHU, Guli ZHOU, Hui XU, Huaming LI. Preparation of MOFs-derived hollow Co3O4/CdIn2S4 heterojunction with enhanced photocatalytic carbon dioxide reduction activity[J]. CIESC Journal, 2020, 71(6): 2780-2787.
杨金曼, 朱兴旺, 周固礼, 许晖, 李华明. MOFs诱导中空Co3O4/CdIn2S4合成及光催化CO2还原性能研究[J]. 化工学报, 2020, 71(6): 2780-2787.
Add to citation manager EndNote|Ris|BibTeX
1 | Wu J, Li X D, Shi W, et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers[J]. Angew. Chem. Int. Ed., 2018, 57: 8719-8723. |
2 | 张甄, 王宝冬, 赵兴雷, 等. 光电催化二氧化碳能源化利用研究进展[J]. 化工进展, 2019, 38(9): 3927-3935. |
Zhang Z, Wang B D, Zhao X L, et al. Research progress of energy utilization of CO2 by photoelectrocatalysis[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3927-3935. | |
3 | Liu X, Inagaki S, Gong J L. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation[J]. Angew. Chem. Int. Ed., 2016, 55: 14924-14950. |
4 | Li X, Yu J G, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chem. Rev., 2019, 119: 3962-4179. |
5 | Qamar S, Lei F C, Liang L, et al. Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction[J]. Nano Energy, 2016, 26: 692-698. |
6 | 何志桥, 林海燕, 陈建孟, 等. Ag3PO4形貌和晶面对Ag/Ag3PO4等离子体催化剂光催化还原CO2的影响[J]. 化工学报, 2015, 66(12): 4850-4857. |
He Z Q, Lin H Y, Chen J M, et al. Effect of morphology and exposed facets of Ag3PO4 on photocatalytic reduction of CO2 to CH3OH over Ag/Ag3PO4 plasmonic photocatalysts[J]. CIESC Journal, 2015, 66(12): 4850-4857. | |
7 | Deng X, Li R, Wu S K, et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction[J]. J. Am. Chem. Soc., 2019, 141(27): 10924-10929. |
8 | Chansol K, Min C K, Ahmed A S, et al. Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light[J]. ACS Catal., 2018, 8: 4170-4177. |
9 | Wang S B, Guan B Y, Wang X, et al. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2018, 140(45): 15145-15148. |
10 | Wang S B, Guan B Y, Lu Y, et al. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction[J]. J. Am. Chem. Soc., 2017, 139: 17305-17308. |
11 | An H Q, Li M, Liu R D, et al. Design of AgxAu1-x alloy/ZnIn2S4 system with tunable spectral response and schottky barrier height for visible-light-driven hydrogen evolution[J]. Chem. Eng. J., 2019, 122953. |
12 | Xue C, An H, Yan X Q, et al. Spatial charge separation and transfer in ultrathin CdIn2S4 /rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-light-driven hydrogen evolution[J]. Nano Energy, 2017, 39: 513-523. |
13 | Zhang N, Gao C M, Xiong Y J. Defect engineering: a versatile tool for tuning the activation of key molecules in photocatalytic reactions[J]. J. Energy Chem., 2019, 37: 43-57. |
14 | Xu H, She X J, Fei T, et al. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution[J]. ACS Nano, 2019, 13: 11294-11302. |
15 | Zhu X W, Huang S Q, Yu Q, et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion[J]. Appl. Catal. B: Environ., 2020, 118760. |
16 | Yuan X Z, Jiang L B, Liang J, et al. In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation[J]. Chem. Eng. J., 2019, 356: 371-381. |
17 | 何志桥, 陈锦萍, 童丽丽, 等. BiOCl/g-C3N4异质结催化剂可见光催化还原CO2[J]. 化工学报, 2016, 67(11): 4634-4641. |
He Z Q, Chen J P, Tong L L, et al. BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light[J]. CIESC Journal, 2016, 67(11): 4634-4641. | |
18 | Dong K, He J, Liu J, et al. Photocatalytic performance of Cu2O-loaded TiO2/rGO nanoheterojunctions obtained by UV reduction[J]. J. Mater. Sci., 2017, 52: 6754-6766. |
19 | 黄刚, 陈玉贞, 江海龙. 金属有机骨架材料在催化中的应用[J]. 化学学报, 2016, 74: 113-129. |
Huang G, Chen Y Z, Jiang H L. Metal-organic frameworks for catalysis[J]. Acta Chim. Sinica, 2016, 74: 113-129. | |
20 | Xu H Q, Hu J H, Wang D K, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states[J]. J. Am. Chem. Soc., 2015, 137: 13440-13443. |
21 | Xu H Q, Wang K, Ding M, et al. Seed-mediated synthesis of metal-organic frameworks[J]. J. Am. Chem. Soc., 2016, 138: 5316-5320. |
22 | Yang J, Zhang F J, Lu H Y, et al. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J]. Angew. Chem. Int. Ed., 2015, 54: 10889-10893. |
23 | Yang J M, Zhu X W, Mo Z, et al. A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction[J]. Inorg. Chem. Front., 2018, 5: 3163-3169. |
24 | Li Z H, Yu C C, Wen Y Y, et al. Mesoporous hollow Cu–Ni alloy nanocage from core–shell Cu@Ni nanocube for efficient hydrogen evolution reaction[J]. ACS Catal., 2019, 9: 5084-5095. |
25 | Xiao M, Wang Z L, Lyu M Q, et al. Hollow nanostructures for photocatalysis: advantages and challenges[J]. Adv. Mater., 2018, 30: 1801369. |
26 | Ling C C, Ye X J, Zhang J H, et al. Solvothermal synthesis of CdIn2S4 photocatalyst for selective photosynthesis of organic aromatic compounds under visible light[J]. Sci. Rep., 2017, 7: 1-16. |
27 | Zhang J H, Li F, Chen W B, et al. Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction[J]. Electrochim. Acta, 2019, 300: 123-130. |
28 | Pan Y T, Li D D, Jiang H L, Sodium-doped C3N4/MOF heterojunction composites with tunable band structures for photocatalysis: interplay between light harvesting and electron transfer[J]. Chem. Eur. J., 2018, 24: 18403-18407. |
29 | Cui X F, Wang J, Liu B, et al. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands[J]. J. Am. Chem. Soc., 2018, 140: 16514-16520. |
30 | She X J, Xu H, Li L, et al. Steering charge transfer for boosting photocatalytic H2 evolution: integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect[J]. Appl. Catal. B: Environ., 2019, 245: 477-485. |
31 | Zhu X W, Ji H Y, Yi J J, et al. A specifically exposed cobalt oxide/carbon nitride 2D heterostructure for carbon dioxide photoreduction[J]. Ind. Eng. Chem. Rev., 2018, 57: 17394-17400. |
[1] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[2] | Chuanbao XIAO, Linyang LI, Wufeng LIU, Nianbing ZHONG, Quanhua XIE, Dengjie ZHONG, Haixing CHANG. Effective removal of 2,4,6-trichlorophenol by coupling photocatalysis with ion exchange adsorption [J]. CIESC Journal, 2023, 74(4): 1587-1597. |
[3] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[4] | Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries [J]. CIESC Journal, 2022, 73(8): 3688-3698. |
[5] | Xu WANG, Leyao ZHANG, Haoxuan ZHANG, Jiahui YAN, Yushuai WU, Dong WU, Huiyong CHEN, Xiaoxun MA. Effect of hollow structure on the acetone adsorption property of tungsten-substituted MFI zeolite [J]. CIESC Journal, 2022, 73(3): 1194-1206. |
[6] | CHEN Chen, WANG Mingming, WANG Zhigang, TAN Xiaoyao. Hydrogen production by ethanol autothermal reforming using nickel-based asymmetric hollow fiber membranes [J]. CIESC Journal, 2021, 72(S1): 482-493. |
[7] | NIU Xiaopo, XU Shuang, LI Xiaoxue, FENG Fuxiang, WANG Qingfa. Hollow Pt/ZSM-5 catalysts for highly selective hydrodeoxygenation of guaiacol to cycloalkanes [J]. CIESC Journal, 2021, 72(5): 2616-2625. |
[8] | Hongyong ZHAO, Jincheng CAO, Xiaoli DING, Qianqian CAO, Xinlan WANG, Yuzhong ZHANG. Synthesis of PEO/hollow polypyrrole nanoparticle mixed matrix membranes for CO2 separation [J]. CIESC Journal, 2020, 71(S2): 210-215. |
[9] | Zhe BAI, Ruijian LI, Wenshuo HOU, Haijun LI, Zhenhua WANG. Synthesis of bimetallic sulfide CuCo2S4 and its application in lithium-sulfur batteries [J]. CIESC Journal, 2020, 71(9): 4282-4291. |
[10] | Mingxing WANG, Xin ZHAO, Tao WANG, Jiaojiao LU, Zhiping ZHAO. Study of PVC hollow fiber membrane grafted with DMAE by low-temperature H2O plasma surface modification [J]. CIESC Journal, 2020, 71(9): 4200-4210. |
[11] | LIU Shuai,LI Xuelei,LI Qimeng,WANG Yanjuan,ZHANG Jian,FENG Ruijiang,HU Shaozheng. Kapok fiber modified carbon nitride photocatalytic degradation of organic pollutants [J]. CIESC Journal, 2020, 71(12): 5530-5540. |
[12] | Qingnan SONG, Yuting ZHANG, Chun ZHANG, Zhiliang ZHU, Xuehong GU. Diethylamine template-directed synthesis of hollow fiber supported SAPO-34 membranes [J]. CIESC Journal, 2019, 70(6): 2316-2324. |
[13] | Lisha SHENG, Zhenqian CHEN. Preparation and characterization of electrostatic-assisted porous liquid [J]. CIESC Journal, 2019, 70(3): 1163-1170. |
[14] | LIU Yangjiu, HAN Jitian, WANG Yunshan, TIEN-CHIEN Jen. Experimental study on saline solution by direct contact membrane distillation [J]. CIESC Journal, 2018, 69(S2): 246-251. |
[15] | LIU Yu, HE Xin, ZHOU Wenying, LIAO Dankui, CUI Xuemin, SU Yao'en, TONG Zhangfa. Preparation and electrochemical properties of whisker-shaped hollow porous nitrogen-doped composite carbon electrode materials [J]. CIESC Journal, 2018, 69(S1): 115-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||