CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3688-3698.DOI: 10.11949/0438-1157.20220263
• Energy and environmental engineering • Previous Articles Next Articles
Lin PENG(), Mingxin NIU(), Yu BAI(), Kening SUN()
Received:
2022-03-01
Revised:
2022-04-22
Online:
2022-09-06
Published:
2022-08-05
Contact:
Yu BAI, Kening SUN
通讯作者:
白羽,孙克宁
作者简介:
彭琳(1997—),女,博士研究生,penglin_bp@163.com基金资助:
CLC Number:
Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries[J]. CIESC Journal, 2022, 73(8): 3688-3698.
彭琳, 牛明鑫, 白羽, 孙克宁. 中空硫球-MoS2/rGO材料的制备及其在锂硫电池中的应用[J]. 化工学报, 2022, 73(8): 3688-3698.
Add to citation manager EndNote|Ris|BibTeX
电极 | Re/Ω | Rct/Ω |
---|---|---|
HS-MoS2/rGO | 2.35 | 30.09 |
HS-rGO | 2.46 | 40.49 |
Table 1 The EIS results of HS-MoS2/rGO and HS-rGO electrodes
电极 | Re/Ω | Rct/Ω |
---|---|---|
HS-MoS2/rGO | 2.35 | 30.09 |
HS-rGO | 2.46 | 40.49 |
1 | Yi Y Y, Yu L H, Tian Z N, et al. Biotemplated synthesis of transition metal nitride architectures for flexible printed circuits and wearable energy storages[J]. Advanced Functional Materials, 2018, 28(50): 1805510. |
2 | Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
3 | He J R, Luo L, Chen Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(34): 1702707. |
4 | Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787. |
5 | Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288. |
6 | Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200. |
7 | Shi H F, Lv W, Zhang C, et al. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up[J]. Advanced Functional Materials, 2018, 28(38): 1800508. |
8 | Jiao L, Zhang C, Geng C N, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(19): 1900219. |
9 | Pang Q, Liang X, Kwok C Y, et al. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1: 16132. |
10 | He J R, Chen Y F, Lv W Q, et al. From metal-organic framework to Li2S@C-Co-N nanoporous architecture: a high-capacity cathode for lithium-sulfur batteries[J]. ACS Nano, 2016, 10(12): 10981-10987. |
11 | Bhargav A, He J R, Gupta A, et al. Lithium-sulfur batteries: attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291. |
12 | Yuan Z, Peng H J, Huang J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39): 6105-6112. |
13 | Wen L, Li F, Cheng H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices[J]. Advanced Materials, 2016, 28(22): 4306-4337. |
14 | Zhang B, Kang F Y, Tarascon J M, et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science, 2016, 76: 319-380. |
15 | Zhou G M, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4): 641-647. |
16 | 杨蓉, 王黎晴, 吕梦妮, 等. 锂硫电池石墨烯/纳米硫复合正极材料的制备及电化学性能[J]. 化工学报, 2016, 67(10): 4363-4369. |
Yang R, Wang L Q, Lyu M N, et al. Preparation and electrochemical properties of graphene/nano-sulfur composite as cathode materials for lithium-sulfur batteries[J]. CIESC Journal, 2016, 67(10): 4363-4369. | |
17 | Wang B, Wang L, Zhang B, et al. Ultrafine zirconium boride nanoparticles constructed bidirectional catalyst for ultrafast and long-lived lithium-sulfur batteries[J]. Energy Storage Materials, 2022, 45: 130-141. |
18 | Chang Z, Dou H, Ding B, et al. Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries[J]. Journal of Materials Chemistry A, 2017, 5(1): 250-257. |
19 | Zheng C, Niu S Z, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 306-312. |
20 | Yang X F, Gao X J, Sun Q, et al. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries[J]. Advanced Materials, 2019, 31(25): 1901220. |
21 | Zhang Q, Zhang X F, Li M, et al. Sulfur-deficient MoS2- x promoted lithium polysulfides conversion in lithium-sulfur battery: a first-principles study[J]. Applied Surface Science, 2019, 487: 452-463. |
22 | Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527. |
23 | Wang Q, Zhao H Q, Li B Y, et al. MOF-derived Co9S8 nano-flower cluster array modified separator towards superior lithium sulfur battery[J]. Chinese Chemical Letters, 2021, 32(3): 1157-1160. |
24 | Zhang H, Zhao Z B, Hou Y N, et al. Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion[J]. Journal of Materials Chemistry A, 2019, 7(15): 9230-9240. |
25 | Mosavati N, Salley S O, Ng K Y S. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries[J]. Journal of Power Sources, 2017, 340: 210-216. |
26 | Yang S, Xiao R, Hu T Z, et al. Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li-S batteries[J]. Nano Energy, 2021, 90: 106584. |
27 | Sun R, Bai Y, Luo M, et al. Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium–sulfur batteries[J]. ACS Nano, 2021, 15(1): 739-750. |
28 | Wang H Q, Zhang W C, Xu J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707520. |
29 | Balach J, Linnemann J, Jaumann T, et al. Metal-based nanostructured materials for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23127-23168. |
30 | Lim W G, Kim S, Jo C, et al. A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics[J]. Angewandte Chemie, 2019, 131(52): 18920-18931. |
31 | Li X Y, Feng S, Zhao M, et al. Surface gelation on disulfide electrocatalysts in lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2022, 61(7): e202114671. |
32 | Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(20): 1601759. |
33 | Yan B, Li X F, Xiao W, et al. Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects[J]. Journal of Materials Chemistry A, 2020, 8(35): 17848-17882. |
34 | Wang H E, Li X C, Qin N, et al. Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator[J]. Journal of Materials Chemistry A, 2019, 7(19): 12068-12074. |
35 | He J R, Hartmann G, Lee M, et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries[J]. Energy & Environmental Science, 2019, 12(1): 344-350. |
36 | Yu B, Chen Y F, Wang Z G, et al. 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li-S batteries[J]. Journal of Power Sources, 2020, 447: 227364. |
37 | Huang X, Tang J Y, Luo B, et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(32): 1901872. |
38 | Li Y J, Xu P, Chen G L, et al. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst[J]. Chemical Engineering Journal, 2020, 380: 122595. |
39 | Xu W, Pang H M, Zhou H L, et al. Lychee-like TiO2@TiN dual-function composite material for lithium–sulfur batteries[J]. RSC Advances, 2020, 10(5): 2670-2676. |
40 | Zeng S B, Arumugam G M, Liu X H, et al. Encapsulation of sulfur into N-doped porous carbon cages by a facile, template-free method for stable lithium-sulfur cathode[J]. Small, 2020, 16(39): 2001027. |
41 | Ni L B, Wu Z, Zhao G J, et al. Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries[J]. Small, 2017, 13(14): 1603466. |
42 | Mo Y X, Lin J X, Wu Y J, et al. Core-shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: a conductive cathode with suppressed shuttling effect for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4065-4073. |
43 | Zhang L, Chen Z X, Dongfang N C, et al. Nickel-cobalt double hydroxide as a multifunctional mediator for ultrahigh-rate and ultralong-life Li-S batteries[J]. Advanced Energy Materials, 2018, 8(35): 1802431. |
44 | Zhang R, Dong Y T, Al-Tahan M A, et al. Insights into the sandwich-like ultrathin Ni-doped MoS2/rGO hybrid as effective sulfur hosts with excellent adsorption and electrocatalysis effects for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 60: 85-94. |
45 | Li Z T, Deng S Z, Xu R F, et al. Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: synthetic effect between 2D components[J]. Electrochimica Acta, 2017, 252: 200-207. |
46 | Li F, Li J, Cao Z, et al. MoS2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(43): 21772-21778. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[9] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[10] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[11] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[12] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[13] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||