CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2735-2742.DOI: 10.11949/0438-1157.20200071
• Material science and engineering, nanotechnology • Previous Articles Next Articles
He WANG1(),Nan QIN2,3,Xin GUO2,3,Junsheng ZHENG2,3(),Jigang ZHAO1()
Received:
2020-01-17
Revised:
2020-04-08
Online:
2020-06-05
Published:
2020-06-05
Contact:
Junsheng ZHENG,Jigang ZHAO
王赫1(),秦楠2,3,郭鑫2,3,郑俊生2,3(),赵基钢1()
通讯作者:
郑俊生,赵基钢
作者简介:
王赫(1993—),男,硕士研究生,基金资助:
CLC Number:
He WANG, Nan QIN, Xin GUO, Junsheng ZHENG, Jigang ZHAO. Surface modification and electrochemical properties of hard carbon anode material for lithium ion capacitors[J]. CIESC Journal, 2020, 71(6): 2735-2742.
王赫, 秦楠, 郭鑫, 郑俊生, 赵基钢. 锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J]. 化工学报, 2020, 71(6): 2735-2742.
Add to citation manager EndNote|Ris|BibTeX
Sample | C—C | C—O | CO | O—CO |
---|---|---|---|---|
HC | 75.9 | 12.7 | 3.8 | 7.5 |
OHC | 70.7 | 13.6 | 7.2 | 8.3 |
Table 1 Relative content of different functional groups of HC and OHC/%
Sample | C—C | C—O | CO | O—CO |
---|---|---|---|---|
HC | 75.9 | 12.7 | 3.8 | 7.5 |
OHC | 70.7 | 13.6 | 7.2 | 8.3 |
Sample | k1/(mA·s·mV-1) | k2/(mA·s1/2·mV-1/2) | (k1/k2)/(s1/2·mV-1/2) |
---|---|---|---|
HC | 1.67 | 1.30 | 1.28 |
OHC | 1.91 | 1.15 | 1.66 |
Table 2 k1 and k2 coefficients for different electrodes
Sample | k1/(mA·s·mV-1) | k2/(mA·s1/2·mV-1/2) | (k1/k2)/(s1/2·mV-1/2) |
---|---|---|---|
HC | 1.67 | 1.30 | 1.28 |
OHC | 1.91 | 1.15 | 1.66 |
Sample | R0/Ω | RSEI/ Ω | RCT/ Ω | D(Li+)/(cm2·s-1) |
---|---|---|---|---|
HC | 4.185 | 30.88 | 61.65 | 4.45-8 |
OHC | 4.939 | 26.06 | 17.77 | 6.36-8 |
Table 3 Fitting EIS parameters of HC and OHC
Sample | R0/Ω | RSEI/ Ω | RCT/ Ω | D(Li+)/(cm2·s-1) |
---|---|---|---|---|
HC | 4.185 | 30.88 | 61.65 | 4.45-8 |
OHC | 4.939 | 26.06 | 17.77 | 6.36-8 |
1 | Jin L M, Guo, X, Gong R Q, et al. Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes[J]. Chemelectrochem, 2019, 6: 3020-3029. |
2 | Jin L M, Zheng J S, Wu Q, et al. Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg[J]. Materials Today Energy, 2018, 7: 51-57. |
3 | Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium[J]. Chemical Reviews, 2018, 118(14): 6457-6498. |
4 | Zheng J S, Zhang L, Shellikeri A, et al. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage[J]. Scientific Reports, 2017, 7: 41910. |
5 | Li B, Zheng J S, Zhang H Y, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advancd Materials, 2018, 30(17): 1705670. |
6 | Jin L M, Gong R Q, Zhang W C, et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors: a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode[J]. Journal of Materials Chemistry A, 2019, 7: 8234-8244. |
7 | Dou X, Hasa I, Saurel D, et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. |
8 | Arnaiz M, Nair V, Mitra S, et al. Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors[J]. Electrochimica Acta, 2019, 304: 437-446. |
9 | Cao W, Zheng J S, Adams D, et al. Comparative study of the power and cycling performance for advanced lithium-ion capacitors with various carbon anodes[J]. Journal of the Electrochemical Society, 2014, 161(14): A2087- A2092. |
10 | Zhou Q F, Gong Y, Tao K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochimica Acta, 2019, 320: 134582. |
11 | Zhu Y D, Huang Y, Chen C, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochimica Acta, 2019, 321: 134698. |
12 | Wu X L, Ding B, Zhang C G, et al. Self-activation of nitrogen and sulfur dual-doping hierarchical porous carbons for asymmetric supercapacitors with high energy densities[J]. Carbon, 2019, 153: 225-233. |
13 | Chen M, Wang W, Liang X, et al. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2018, 8(19): 1800171. |
14 | Chen J T, Yang B J, Hou H J, et al. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor[J]. Advanced Energy Materials, 2019, 9(19): 1803894. |
15 | Fu R S, Chang Z Z, Shen C X, et al. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage[J]. Electrochimica Acta, 2018, 260: 430-438. |
16 | Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015, 5(11): 1402034. |
17 | Jin L M, Guo X, Shen C, et al. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor[J]. Journal of Power Sources, 2019, 441: 227211. |
18 | Shellikeri A, Watson V, Adams D, et al. Investigation of pre-lithiation in graphite and hard-carbon anodes using different lithium source structures[J]. Journal of the Electrochemical Society, 2017, 164(14): A3914- A3924. |
19 | Guo X, Gong R, Qin N, et al. The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor[J]. Journal of Electroanalytical Chemistry, 2019, 845: 84-91. |
20 | Odziomek M, Chaput F, Rutkowska A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nature Communications, 2017, 8: 15636. |
21 | Shellikeri A, Yturriaga S, Zheng J S, et al. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode-long term cycle life study, rate effect and charge sharing analysis[J]. Journal of Power Sources, 2018, 392: 285-295. |
22 | Sun N, Guan Z, Liu Y, et al. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351. |
23 | Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J]. Materials Characterization, 2013, 85: 111-123. |
24 | Dysart A D, Phuah X L, Shrestha L K, et al. Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic[J]. Carbon, 2018, 134: 334-344. |
25 | Fujimoto H, Tokumitsu K, Mabuchi A, et al. The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors[J]. Journal of Power Sources, 2010, 195(21): 7452-7456. |
26 | Yin L, Feng J L, Zhang X H, et al. Advanced sodium-ion pseudocapacitor performance of oxygen-implanted hard carbon derived from carbon spheres[J]. Journal of Materials Science, 2019, 54(5): 4124-4134. |
27 | Haj Y A, Balamurugan J, Kim N H, et al. Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(8): 3941-3952. |
28 | Fang Q, Zhou X, Deng W, et al. Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants[J]. Small, 2017, 13(14): 1603779. |
29 | Sheng L Z, Jiang L L, Wei T, et al. Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities[J]. Advanced Energy Materials, 2017, 7(19): 1700668. |
30 | Li D, Shi J, Liu H L, et al. T-Nb2O5 embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors[J]. Sustainable Energy & Fuels, 2019, 3(4): 1055-1065. |
31 | Yang C Y, Sun M Q, Zhang L, et al. ZnFe2O4@carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14713-14721. |
32 | Huang S J, Yang L W, Gao M, et al. Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors[J]. Journal of Power Sources, 2019, 437: 226934. |
33 | Kim H S, Cook J B, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nature Materials, 2017, 16(4): 454-460. |
34 | Come J, Taberna P L, Hamelet S, et al. Electrochemical kinetic study of LiFePO4 using cavity microelectrode[J]. Journal of the Electrochemical Society, 2011, 158(10): A1090- A1093. |
35 | Chao D, Zhu C, Yang P, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nature Communications, 2016, 7(1): 1-8. |
36 | Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials, 2019, 23: 409-417. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[9] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[10] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[14] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[15] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||