CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 282-292.DOI: 10.11949/0438-1157.20190795
• Process system engineering • Previous Articles Next Articles
Haitao MAO1(),Lu WANG1,Zhiying XU2,Wancui XIE2,Jian DU1,Lei ZHANG1()
Received:
2019-07-10
Revised:
2019-09-13
Online:
2020-04-25
Published:
2020-04-25
Contact:
Lei ZHANG
毛海涛1(),王璐1,许志颖2,解万翠2,都健1,张磊1()
通讯作者:
张磊
作者简介:
毛海涛(1994—),男,硕士研究生,基金资助:
CLC Number:
Haitao MAO, Lu WANG, Zhiying XU, Wancui XIE, Jian DU, Lei ZHANG. Mixture product design based on molecular surface charge density distribution and machine learning[J]. CIESC Journal, 2020, 71(S1): 282-292.
毛海涛, 王璐, 许志颖, 解万翠, 都健, 张磊. 基于分子表面电荷密度分布与机器学习的混合物设计方法研究[J]. 化工学报, 2020, 71(S1): 282-292.
Add to citation manager EndNote|Ris|BibTeX
组分性质 | 基团贡献法公式 | 阈值 |
---|---|---|
Table 1 Group contribution method and corresponding thresholds
组分性质 | 基团贡献法公式 | 阈值 |
---|---|---|
传感器名称 | 检测气味类型 | 检出限/ (mg/kg) |
---|---|---|
W1C | 有机化合物 | 10 |
W5S | 氮氧化物 | 1 |
W3C | 氨类 | 10 |
W6S | 氢气 | 0.1 |
W5C | 烷烃与非极性有机化合物 | 1 |
W1S | 甲烷 | 100 |
W1W | 含硫有机化合物 | 1 |
W2S | 酒精 | 100 |
W2W | 无机硫 | 1 |
W3S | 有机化合物以及脂肪族有机化合物 | 10 |
Table 2 Detected objections and detection limits of PEN3 E-nose
传感器名称 | 检测气味类型 | 检出限/ (mg/kg) |
---|---|---|
W1C | 有机化合物 | 10 |
W5S | 氮氧化物 | 1 |
W3C | 氨类 | 10 |
W6S | 氢气 | 0.1 |
W5C | 烷烃与非极性有机化合物 | 1 |
W1S | 甲烷 | 100 |
W1W | 含硫有机化合物 | 1 |
W2S | 酒精 | 100 |
W2W | 无机硫 | 1 |
W3S | 有机化合物以及脂肪族有机化合物 | 10 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
可食用 | 32.42 | 馊味 | 25.93 |
烘焙味 | 43.00 | 愉悦度 | 60.19 |
甜味 | 34.37 | 蒸气压/Pa | 53.86 |
水果味 | 31.54 | 扩散系数/(m2/h) | 0.16 |
花香味 | 29.95 |
Table 3 First consumer needs of cis-3-hexenyl propionate
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
可食用 | 32.42 | 馊味 | 25.93 |
烘焙味 | 43.00 | 愉悦度 | 60.19 |
甜味 | 34.37 | 蒸气压/Pa | 53.86 |
水果味 | 31.54 | 扩散系数/(m2/h) | 0.16 |
花香味 | 29.95 |
Fig.6 Euclidean distance differences between S descriptors predicted by IML models and screened ingredients from Keller database for cis-3-hexenyl propionate substitution
参数 | 丙酸叶醇酯 | 替代混合物1 | 替代混合物2 | ||||
---|---|---|---|---|---|---|---|
4-异丙基苯甲醇 | 左旋香芹酮 | 混合物偏差 | 2-甲基戊酸 | 2-乙基丁酸烯丙酯 | 混合物偏差 | ||
CAS No. | 33467-74-2 | 536-60-7 | 6485-40-1 | — | 97-61-0 | 7493-69-8 | — |
体积分数 | 1 | 0.2 | 0.8 | — | 0.4 | 0.6 | — |
溶解度 | 158.9 | 1687 | 367.1 | 472.18 | 15000 | 157.3 | 5935.48 |
沸点Tb①(101.325 kPa) /K | 453-455 | 512.66 | 499.47 | 47.11-49.11 | 468.36 | 449.96 | 2.32-4.32 |
闪点Tf①/K | 333 | 498.15 | 465.15 | 138.75 | 364.26 | 327.59 | 9.258 |
Ko/w① | 2.909 | 2.37 | 2.71 | -0.267 | 1.8 | 2.972 | -0.4058 |
LC50②/(mol·L-1) | 3.36 | 3.25 | 3.39 | 0.002 | 2.45 | 4.03 | 0.038 |
Table 4 Results for substitution design of cis-3-hexenyl propionate
参数 | 丙酸叶醇酯 | 替代混合物1 | 替代混合物2 | ||||
---|---|---|---|---|---|---|---|
4-异丙基苯甲醇 | 左旋香芹酮 | 混合物偏差 | 2-甲基戊酸 | 2-乙基丁酸烯丙酯 | 混合物偏差 | ||
CAS No. | 33467-74-2 | 536-60-7 | 6485-40-1 | — | 97-61-0 | 7493-69-8 | — |
体积分数 | 1 | 0.2 | 0.8 | — | 0.4 | 0.6 | — |
溶解度 | 158.9 | 1687 | 367.1 | 472.18 | 15000 | 157.3 | 5935.48 |
沸点Tb①(101.325 kPa) /K | 453-455 | 512.66 | 499.47 | 47.11-49.11 | 468.36 | 449.96 | 2.32-4.32 |
闪点Tf①/K | 333 | 498.15 | 465.15 | 138.75 | 364.26 | 327.59 | 9.258 |
Ko/w① | 2.909 | 2.37 | 2.71 | -0.267 | 1.8 | 2.972 | -0.4058 |
LC50②/(mol·L-1) | 3.36 | 3.25 | 3.39 | 0.002 | 2.45 | 4.03 | 0.038 |
试剂 | 说明 |
---|---|
丙酸叶醇酯 | 北京迈瑞达科技有限公司,纯度>98% |
2-甲基戊酸 | 北京迈瑞达科技有限公司,纯度>98% |
2-乙基丁酸烯丙酯 | 北京迈瑞达科技有限公司,纯度>97% |
4-异丙基苯甲醇 | 河南郑州阿尔法化工有限公司,纯度>99% |
左旋香芹酮 | 河南郑州阿尔法化工有限公司,纯度>97% |
95%乙醇 | 天津市富宇化工有限公司 |
Table 5 Equipment and materials for substitution of cis-3-hexenyl propionate
试剂 | 说明 |
---|---|
丙酸叶醇酯 | 北京迈瑞达科技有限公司,纯度>98% |
2-甲基戊酸 | 北京迈瑞达科技有限公司,纯度>98% |
2-乙基丁酸烯丙酯 | 北京迈瑞达科技有限公司,纯度>97% |
4-异丙基苯甲醇 | 河南郑州阿尔法化工有限公司,纯度>99% |
左旋香芹酮 | 河南郑州阿尔法化工有限公司,纯度>97% |
95%乙醇 | 天津市富宇化工有限公司 |
1 | Rodríguez O, Gomes P, Mata V, et al. Chapter 1 - A Product Engineering Approach in the Perfume Industry [M]//Teixeira M A. Perfume Engineering. Oxford: Butterworth-Heinemann, 2019: 1-13. |
2 | Wibowo C, Ng K M. Product-oriented process synthesis and development: creams and pastes[J]. AIChE Journal, 2001, 47(12): 2746-2767. |
3 | Fung K Y, Ng K M. Product-centered processing: pharmaceutical tablets and capsules[J]. AIChE Journal, 2003, 49(5): 1193-1215. |
4 | Gani R, Brignole E A. Molecular design of solvents for liquid extraction based on UNIFAC[J]. Fluid Phase Equilibria, 1983, 13(83): 331-340. |
5 | Joback K G. Designing molecules possessing desired physical property values[D]. Massachusetts: Massachusetts Institute of Technology, 1989 |
6 | Conte E, Gani R, Ng K M. Design of formulated products: a systematic methodology[J]. AIChE Journal, 2011, 57: 2431-2449. |
7 | Kontogeorgis G M, Michele M, Ng K M, et al. An integrated approach for the design of emulsified products[J]. AIChE Journal, 2019, 65: 75-86. |
8 | 张磊, 刘琳琳, 都健. 替代燃油的计算机辅助设计方法[J]. 化工进展, 2018, 37(6): 2438-2444. |
Zhang L, Liu L L, Du J. A computer-aided design methodology for tailor-made surrogate fuels[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2438-2444. | |
9 | Hornic K. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2: 359-366. |
10 | Raccuglia P, Elbert K C, Adler P D, et al. Machine-learning-assisted materials discovery using failed experiments[J]. Nature, 2016, 533: 73-76. |
11 | 苏荣欣, 邹龙花, 齐崴, 等. 酪蛋白-胰酶水解历程分子量变化模拟与三维表征[J]. 化工学报, 2013, 64(1): 346-351. |
Su R X, Zou L H, Qi W, et al. Simulation and 3D plot of molecular weight distribution of released peptides from pancreatic hydrolysis of casein[J]. CIESC Journal, 2013, 64(1): 346-351. | |
12 | 黄凯, 陈勇, 母志为, 等. 基于人工神经网络和遗传算法的甲烷制氢催化剂设计[J]. 化工学报, 2016, 67(8): 3481-3490. |
Huang K, Chen Y, Mu Z W, et al. Catalyst design for production of hydrogen from methane based on artificial neural network and genetic algorithm[J]. CIESC Journal, 2016, 67(8): 3481-3490. | |
13 | 安爱民, 刘云利, 张浩琛, 等. 微生物燃料电池的动态性能分析及其神经网络预测控制[J]. 化工学报, 2017, 68(3): 1090-1098. |
An A M, Liu Y L, Zhang H C, et al. Dynamic performance analysis and neural network predictive control of microbial fuel cell[J]. CIESC Journal, 2017, 68(3): 1090-1098. | |
14 | 林生岭, 徐绍芬, 王俊德, 等. 钙钛矿型LaxSr1-xNi1-yCoyO3光电催化活性研究[J]. 化学学报, 2005, 63(5): 385-390. |
Lin S L, Xu S F, Wang J D, et al. Study on photo-electro catalytic activity of perovskite type oxides LaxSr1-xNi1-yCoyO3[J]. Acta Chimica Sinica, 2005, 63(5): 385-390. | |
15 | Zhang L, Mao H, Liu L, et al. A machine learning based computer-aided molecular design/screening methodology for fragrance molecules[J]. Computers & Chemical Engineering, 2018, 115: 295-308. |
16 | Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering[J]. Science, 2018, 361: 360-365. |
17 | Klamt A, Schueuermann G J. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. Journal of the Chemical Society, Perkin Transactions II, 1993, 5: 799-805. |
18 | Rossiter K J. Structure-odor relationships[J]. Chemical Review, 1996, 96: 3201-3240. |
19 | Klamt A, Reinisch J, Eckert F, et al. Polarization charge densities provide a predictive quantification of hydrogen bond energies[J]. Physical Chemistry Chemical Physics, 2011, 14(2): 955-963. |
20 | Lin S T, Sandler S I. A priori phase equilibrium prediction from a segment contribution solvation model[J]. Industrial & Engineering Chemistry Research, 2002, 41(5): 899-913. |
21 | Klamt A, Eckert F, Arlt W. COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures[J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 101-122. |
22 | Kang X, Liu X, Li J, et al. Heat capacity prediction of ionic liquids based on quantum chemistry descriptors[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16989-16994. |
23 | Kang X, Zhao Z, Qian J, et al. Predicting the viscosity of ionic liquids by the ELM intelligence algorithm[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11344-11351. |
24 | Palomart J, Torrecilla J S, Ferro V R, et al. Development of an a priori ionic liquid design tool (Ⅱ): Ionic liquid selection through the prediction of COSMO-RS molecular descriptor by inverse neural network[J]. Industrial & Engineering Chemistry Research, 2009, 48(4): 2257-2265. |
25 | Keller A, Vosshall L B. Olfactory perception of chemically diverse molecules[J]. BMC Neuroscience, 2016, 17: 55. |
26 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 23-53. |
Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 23-53. | |
27 | 刘方, 徐龙, 马晓迅. BP神经网络的发展及其在化学化工中的应用[J]. 化工进展, 2019, 38(6): 2559-2573. |
Liu F, Xu L, Ma X X. Development of BP neural network and its application in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2559-2573. | |
28 | de Bruyne M, Foster K, Carlson J R. Odor coding in the Drosophila antenna[J]. Neuron, 2001, 30(2): 537-552. |
29 | Tamir A. In Applications of Markov Chains in Chemical Engineering[M]. Amsterdam, Netherlands: Elsevier, 1998. |
30 | Marrero J, Gani R. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183: 183-208. |
31 | Hukkerikar A S. Development of pure component property models for chemical product-process design and analysis[D]. Denmark: Technical University of Denmark, 2013. |
32 | 马琦, 伯继芳, 冯莉, 等. GC-MS结合电子鼻分析干燥方式对杏鲍菇挥发性风味成分的影响[J]. 食品科学, 2019, 40(14): 276-282. |
Ma Q, Bo J F, Feng L, et al. Effect of drying method on volatile components of pleurotus eryngii analyzed by combined use of GC-MS and electronic nose[J]. Food Science, 2019, 40(14): 276-282. | |
33 | Reid R C, Prausnitz J M, Poling B E. The Properties of Gases & Liquids[M]. New York: McGrawHill, 1988. |
34 | Lee B I, Kesler M. A generalized thermodynamic correlation based on three-parameter corresponding states[J]. AIChE Journal, 1975, 21: 510-527. |
[1] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[2] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[6] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[7] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[10] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[13] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[14] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[15] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||