CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3407-3418.DOI: 10.11949/0438-1157.20230458
• Process system engineering • Previous Articles Next Articles
Received:
2023-05-11
Revised:
2023-07-23
Online:
2023-10-18
Published:
2023-08-25
Contact:
Zhenlei WANG
通讯作者:
王振雷
作者简介:
闫琳琦(1999—),女,硕士研究生,Y80210074@mail.ecust.edu.cn
基金资助:
CLC Number:
Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model[J]. CIESC Journal, 2023, 74(8): 3407-3418.
闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418.
参数 | 数值 |
---|---|
STA-BiLSTM隐层节点数 | 12 |
STA-BiLSTM优化器 | Adam |
STA-BiLSTM评价指标 | MSE |
STA-BiLSTM学习率 | 0.01 |
STA-BiLSTM 训练次数 | 300 |
LightGBM目标函数 | Poisson |
LightGBM评价指标 | RMSE和Poisson |
LightGBM学习率 | 0.1 |
LightGBM叶子节点数 | 15 |
LightGBM最大深度 | 8 |
相似样本个数 | 5 |
Table 1 Parameters of flue gas outlet temperature modeling for ethylene cracking furnace
参数 | 数值 |
---|---|
STA-BiLSTM隐层节点数 | 12 |
STA-BiLSTM优化器 | Adam |
STA-BiLSTM评价指标 | MSE |
STA-BiLSTM学习率 | 0.01 |
STA-BiLSTM 训练次数 | 300 |
LightGBM目标函数 | Poisson |
LightGBM评价指标 | RMSE和Poisson |
LightGBM学习率 | 0.1 |
LightGBM叶子节点数 | 15 |
LightGBM最大深度 | 8 |
相似样本个数 | 5 |
Models | MAE | RMSE | MAPE | R2 |
---|---|---|---|---|
BiLSTM | 0.2150 | 0.2420 | 0.1870 | 0.627 |
STA-BiLSTM | 0.0780 | 0.0960 | 0.0670 | 0.941 |
LightGBM | 0.1570 | 0.1830 | 0.1370 | 0.787 |
本文模型 | 0.0630 | 0.0800 | 0.0550 | 0.958 |
Table 2 Evaluation metrics of 5 steps ahead flue gas outlet temperature prediction
Models | MAE | RMSE | MAPE | R2 |
---|---|---|---|---|
BiLSTM | 0.2150 | 0.2420 | 0.1870 | 0.627 |
STA-BiLSTM | 0.0780 | 0.0960 | 0.0670 | 0.941 |
LightGBM | 0.1570 | 0.1830 | 0.1370 | 0.787 |
本文模型 | 0.0630 | 0.0800 | 0.0550 | 0.958 |
参数 | 数值 |
---|---|
STA-BiLSTM隐层节点数 | 8 |
STA-BiLSTM优化器 | Adam |
STA-BiLSTM评价指标 | MSE |
STA-BiLSTM学习率 | 0.01 |
STA-BiLSTM 训练次数 | 100 |
LightGBM目标函数 | regression_l2 |
LightGBM评价指标 | MAPE |
LightGBM学习率 | 0.1 |
LightGBM叶子节点数 | 8 |
LightGBM最大深度 | 5 |
相似样本个数 | 5 |
Table 3 Modeling parameter of C4 concentration
参数 | 数值 |
---|---|
STA-BiLSTM隐层节点数 | 8 |
STA-BiLSTM优化器 | Adam |
STA-BiLSTM评价指标 | MSE |
STA-BiLSTM学习率 | 0.01 |
STA-BiLSTM 训练次数 | 100 |
LightGBM目标函数 | regression_l2 |
LightGBM评价指标 | MAPE |
LightGBM学习率 | 0.1 |
LightGBM叶子节点数 | 8 |
LightGBM最大深度 | 5 |
相似样本个数 | 5 |
Model | MAE | RMSE | MAPE | R2 |
---|---|---|---|---|
BiLSTM | 0.0498 | 0.0606 | 70.48 | 0.890 |
STA-BiLSTM | 0.0449 | 0.0563 | 60.22 | 0.905 |
LightGBM | 0.0433 | 0.0557 | 58.64 | 0.907 |
本文模型 | 0.0402 | 0.0504 | 56.57 | 0.924 |
Table 4 Evaluation metrics of 6 steps ahead C4 concentration prediction
Model | MAE | RMSE | MAPE | R2 |
---|---|---|---|---|
BiLSTM | 0.0498 | 0.0606 | 70.48 | 0.890 |
STA-BiLSTM | 0.0449 | 0.0563 | 60.22 | 0.905 |
LightGBM | 0.0433 | 0.0557 | 58.64 | 0.907 |
本文模型 | 0.0402 | 0.0504 | 56.57 | 0.924 |
1 | 曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3): 788-800. |
Cao P F, Luo X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3): 788-800. | |
2 | Li Y R, Yang C J, Zhang H W, et al. A model combining Seq2Seq network and LightGBM algorithm for industrial soft sensor[J]. IFAC-PapersOnLine, 2020, 53(2): 12068-12073. |
3 | Sun Q Q, Ge Z Q. A survey on deep learning for data-driven soft sensors[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5853-5866. |
4 | 耿志强, 徐猛, 朱群雄, 等. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571. |
Geng Z Q, Xu M, Zhu Q X, et al. Research and application of soft measurement model for complex chemical processes based on deep learning[J]. CIESC Journal, 2019, 70(2): 564-571. | |
5 | 伊金静. 基于深度学习的工业过程软测量[D]. 杭州: 浙江大学, 2019. |
Yi J J. Soft sensing of industrial process based on deep learning[D]. Hangzhou: Zhejiang University, 2019. | |
6 | 周乐, 沈程凯, 吴超, 等. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
Zhou L, Shen C K, Wu C, et al. Deep fusion feature extraction network and its application in soft sensing of chemical process[J]. CIESC Journal, 2022, 73(7): 3156-3165. | |
7 | Yuan X F, Qi S B, Wang Y L, et al. A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data[J]. Control Engineering Practice, 2020, 104: 104614. |
8 | Wang K C, Shang C, Liu L, et al. Dynamic soft sensor development based on convolutional neural networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(26): 11521-11531. |
9 | Sagheer A, Kotb M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing, 2019, 323: 203-213. |
10 | Hu J J, Wang X F, Zhang Y, et al. Time series prediction method based on variant LSTM recurrent neural network[J]. Neural Processing Letters, 2020, 52(2): 1485-1500. |
11 | Luo Y, Liu Q, Zhu H M, et al. Multistep flow prediction on car-sharing systems: a multi-graph convolutional neural network with attention mechanism[C]//Proceedings of the 31st International Conference on Software Engineering and Knowledge Engineering. KSI Research Inc. and Knowledge Systems Institute Graduate School, 2019: 1727-1740. |
12 | 王雅欣, 徐宝昌, 徐朝农, 等. 基于工厂数据的注意力LSTM网络辨识方法[J]. 化工学报, 2020, 71(12): 5664-5671. |
Wang Y X, Xu B C, Xu C N, et al. Attention LSTM network identification method based on factory data[J]. CIESC Journal, 2020, 71(12): 5664-5671. | |
13 | Chandra R, Goyal S, Gupta R. Evaluation of deep learning models for multi-step ahead time series prediction[J]. IEEE Access, 2021, 9: 83105-83123. |
14 | 董亚伟. 基于时空注意力网络的PM2.5多步超前预测研究[D]. 兰州: 兰州大学, 2022. |
Dong Y W. Research on multi-step advanced prediction of PM2.5 based on spatio-temporal attention network[D]. Lanzhou: Lanzhou University, 2022. | |
15 | Yin C R, Dai Q. A deep multivariate time series multistep forecasting network[J]. Applied Intelligence, 2022, 52(8): 8956-8974. |
16 | Dai Y M, Zhou Q, Leng M M, et al. Improving the Bi-LSTM model with XGBoost and attention mechanism: a combined approach for short-term power load prediction[J]. Applied Soft Computing, 2022, 130: 109632. |
17 | Ren J, Yu Z P, Gao G L, et al. A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism[J]. Energy Reports, 2022, 8: 437-443. |
18 | 王成. 基于记忆网络的时间序列多步预测算法研究[D]. 北京: 北京交通大学, 2020. |
Wang C. Research on multi-step prediction algorithm of time series based on memory network[D]. Beijing: Beijing Jiaotong University, 2020. | |
19 | Ben Taieb S, Bontempi G, Atiya A F, et al. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition[J]. Expert Systems with Applications, 2012, 39(8): 7067-7083. |
20 | Ben Taieb S, Sorjamaa A, Bontempi G. Multiple-output modeling for multi-step-ahead time series forecasting[J]. Neurocomputing, 2010, 73(10/11/12): 1950-1957. |
21 | Zhan X B, Zhang S C, Szeto W Y, et al. Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree[J]. Journal of Intelligent Transportation Systems, 2020, 24(2): 125-141. |
22 | Suradhaniwar S, Kar S, Durbha S S, et al. Time series forecasting of univariate agrometeorological data: a comparative performance evaluation via one-step and multi-step ahead forecasting strategies[J]. Sensors, 2021, 21(7): 2430. |
23 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
24 | Siami-Namini S, Tavakoli N, Namin A S. The performance of LSTM and BiLSTM in forecasting time series[C]//2019 IEEE International Conference on Big Data (Big Data). Los Angeles, CA, USA: IEEE, 2020: 3285-3292. |
25 | 罗顺桦, 王振雷, 王昕. 基于注意力机制的Multi-head CNN-LSTM软测量建模[J]. 控制工程, 2022, 29(10): 1821-1828. |
Luo S H, Wang Z L, Wang X. Multi-head CNN-LSTM soft sensor modeling based on attention mechanism[J]. Control Engineering of China, 2022, 29(10): 1821-1828. | |
26 | Guo M H, Xu T X, Liu J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. |
27 | Al Daoud E. Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset[J]. International Journal of Computer and Information Engineering, 2019, 13(1): 6-10. |
28 | Zhou Y, Lin Q, Xiao D. Application of LSTM-LightGBM nonlinear combined model to power load forecasting[J]. Journal of Physics: Conference Series, 2022, 2294(1): 012035. |
29 | 刘晴晴. 基于K近邻的变权组合预测模型及应用[J]. 科学技术创新, 2021(14): 28-29. |
Liu Q Q. Variable weight combination forecasting model based on K nearest neighbor and its application[J]. Scientific and Technological Innovation, 2021(14): 28-29. | |
30 | 彭慧来, 熊伟丽. 基于核慢特征分析和时滞估计的GPR建模[J]. 系统仿真学报, 2019, 31(8): 1562-1571. |
Peng H L, Xiong W L. GPR modeling method based on kernel slow feature analysis and time delay estimation[J]. Journal of System Simulation, 2019, 31(8): 1562-1571. |
[1] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[2] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[3] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[4] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[5] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[6] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[7] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[8] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[9] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[10] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[11] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[12] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[13] | Xinjie ZHOU, Jianlin WANG, Xingcong AI, Enguang SUI, Rutong WANG. IDPC-RVM based online prediction of quality variables for multimode batch processes [J]. CIESC Journal, 2022, 73(7): 3120-3130. |
[14] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[15] | Zihao QI, Wenqi ZHONG, Xi CHEN, Guanwen ZHOU, Xiaoliang ZHAO, Meijing XIN, Yi CHEN, Yongchang ZHU. Research on dynamic characteristics of cement raw meal decomposition process based on hybrid modeling [J]. CIESC Journal, 2022, 73(5): 2039-2051. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 213
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||