CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2123-2135.DOI: 10.11949/0438-1157.20230114
• Energy and environmental engineering • Previous Articles Next Articles
Lei HUANG1,2(), Lingxue KONG1,3(), Jin BAI1, Huaizhu LI1, Zhenxing GUO1, Zongqing BAI1, Ping LI3, Wen LI1
Received:
2023-02-15
Revised:
2023-04-14
Online:
2023-06-29
Published:
2023-05-05
Contact:
Lingxue KONG
黄磊1,2(), 孔令学1,3(), 白进1, 李怀柱1, 郭振兴1, 白宗庆1, 李平3, 李文1
通讯作者:
孔令学
作者简介:
黄磊(1995—),男,博士研究生,18361220739@163.com
基金资助:
CLC Number:
Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal[J]. CIESC Journal, 2023, 74(5): 2123-2135.
黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135.
Coal | Proximate analysis/ %(mass, air dried) | Ultimate analysis/ % (mass, dry ash free) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | St | C | H | N | O* | ||
HSQ | 2.10 | 13.04 | 27.72 | 57.14 | 1.89 | 79.00 | 4.14 | 0.90 | 14.07 | |
JEK | 1.12 | 6.70 | 29.25 | 62.93 | 0.56 | 73.33 | 4.05 | 0.82 | 21.24 | |
OS | 1.78 | 71.92 | 18.55 | 7.75 | 0.68 | 57.11 | 6.92 | 0.49 | 34.79 |
Table 1 Proximate and ultimate analyses of HSQ, JEK and OS
Coal | Proximate analysis/ %(mass, air dried) | Ultimate analysis/ % (mass, dry ash free) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | St | C | H | N | O* | ||
HSQ | 2.10 | 13.04 | 27.72 | 57.14 | 1.89 | 79.00 | 4.14 | 0.90 | 14.07 | |
JEK | 1.12 | 6.70 | 29.25 | 62.93 | 0.56 | 73.33 | 4.05 | 0.82 | 21.24 | |
OS | 1.78 | 71.92 | 18.55 | 7.75 | 0.68 | 57.11 | 6.92 | 0.49 | 34.79 |
Coal | 含量/%(mass) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | SO3 | K2O | Na2O | P2O5 | |
HSQ | 45.59 | 13.89 | 13.15 | 8.18 | 3.62 | 0.68 | 8.48 | 1.02 | 3.35 | 0.56 |
JEK | 18.25 | 9.81 | 24.93 | 11.96 | 6.50 | 0.52 | 19.45 | 0.35 | 6.36 | 0.06 |
OS | 63.32 | 28.12 | 2.25 | 2.05 | 0.31 | 1.22 | 0.40 | 0.22 | 0.40 | 0.09 |
Table 2 Ash chemical compositions of HSQ, JEK and OS
Coal | 含量/%(mass) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | TiO2 | SO3 | K2O | Na2O | P2O5 | |
HSQ | 45.59 | 13.89 | 13.15 | 8.18 | 3.62 | 0.68 | 8.48 | 1.02 | 3.35 | 0.56 |
JEK | 18.25 | 9.81 | 24.93 | 11.96 | 6.50 | 0.52 | 19.45 | 0.35 | 6.36 | 0.06 |
OS | 63.32 | 28.12 | 2.25 | 2.05 | 0.31 | 1.22 | 0.40 | 0.22 | 0.40 | 0.09 |
Element | 含量/(μg/g) | ||||
---|---|---|---|---|---|
Water-soluble | NH4Ac-soluble | HCl-soluble | Insoluble | ||
HSQ | Na | 2645.00 | 1250.00 | 810.00 | 725.50 |
Ca | 105.00 | 5027.50 | 1485.00 | 240.00 | |
JEK | Na | 3797.50 | 2425.00 | 2122.50 | 880.00 |
Ca | 52.50 | 6130.00 | 2857.50 | 310.00 |
Table 3 Occurrence forms of Na and Ca in HSQ and JEK coals
Element | 含量/(μg/g) | ||||
---|---|---|---|---|---|
Water-soluble | NH4Ac-soluble | HCl-soluble | Insoluble | ||
HSQ | Na | 2645.00 | 1250.00 | 810.00 | 725.50 |
Ca | 105.00 | 5027.50 | 1485.00 | 240.00 | |
JEK | Na | 3797.50 | 2425.00 | 2122.50 | 880.00 |
Ca | 52.50 | 6130.00 | 2857.50 | 310.00 |
No. | S+A | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | S/A | DT/℃ | FT/℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | 23.63 | 22.30 | 33.59 | 2.37 | 0.79 | 0.05 | 12.49 | 1.76 | 1272.00 | 1290.00 |
2 | 66.31 | 10.32 | 11.27 | 2.94 | 1.40 | 0.85 | 2.97 | 2.39 | 1243.00 | 1305.00 |
3 | 44.37 | 19.14 | 12.72 | 5.02 | 4.44 | 0.63 | 11.65 | 2.33 | 1162.00 | 1275.00 |
4 | 61.42 | 9.01 | 13.36 | 5.04 | 1.34 | 1.26 | 6.47 | 2.59 | 1204.00 | 1322.00 |
5 | 76.90 | 5.35 | 2.70 | 0.66 | 0.86 | 1.49 | 0.78 | 1.90 | 1500.00 | 1500.00 |
6 | 72.41 | 4.46 | 18.92 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1335.00 | 1383.00 |
7 | 72.41 | 8.63 | 14.75 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1332.00 | 1369.00 |
8 | 72.41 | 12.79 | 10.58 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1298.00 | 1331.00 |
9 | 72.41 | 16.96 | 6.42 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1317.00 | 1359.00 |
10 | 72.41 | 21.23 | 2.25 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1381.00 | 1425.00 |
11 | 75.16 | 10.28 | 11.03 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1408.00 | 1430.00 |
12 | 75.16 | 18.62 | 2.69 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1510.00 | 1540.00 |
13 | 75.16 | 1.95 | 19.36 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1474.00 | 1493.00 |
14 | 90.19 | 2.34 | 3.23 | 0.23 | 0.20 | 0.42 | 0.43 | 1.20 | 1510.00 | 1540.00 |
15 | 75.16 | 18.62 | 2.69 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1483.00 | 1515.00 |
16 | 75.16 | 14.45 | 6.86 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1463.00 | 1487.00 |
17 | 75.16 | 10.28 | 11.03 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1408.00 | 1430.00 |
18 | 75.16 | 6.12 | 15.19 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1405.00 | 1427.00 |
19 | 75.16 | 1.95 | 19.36 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1438.00 | 1456.00 |
20 | 75.16 | 1.95 | 19.36 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1474.00 | 1493.00 |
21 | 23.63 | 22.30 | 33.59 | 2.37 | 0.79 | 0.05 | 12.49 | 1.76 | 1272.00 | 1290.00 |
Table 4 Chemical compositions of coal ash samples
No. | S+A | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | S/A | DT/℃ | FT/℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | 23.63 | 22.30 | 33.59 | 2.37 | 0.79 | 0.05 | 12.49 | 1.76 | 1272.00 | 1290.00 |
2 | 66.31 | 10.32 | 11.27 | 2.94 | 1.40 | 0.85 | 2.97 | 2.39 | 1243.00 | 1305.00 |
3 | 44.37 | 19.14 | 12.72 | 5.02 | 4.44 | 0.63 | 11.65 | 2.33 | 1162.00 | 1275.00 |
4 | 61.42 | 9.01 | 13.36 | 5.04 | 1.34 | 1.26 | 6.47 | 2.59 | 1204.00 | 1322.00 |
5 | 76.90 | 5.35 | 2.70 | 0.66 | 0.86 | 1.49 | 0.78 | 1.90 | 1500.00 | 1500.00 |
6 | 72.41 | 4.46 | 18.92 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1335.00 | 1383.00 |
7 | 72.41 | 8.63 | 14.75 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1332.00 | 1369.00 |
8 | 72.41 | 12.79 | 10.58 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1298.00 | 1331.00 |
9 | 72.41 | 16.96 | 6.42 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1317.00 | 1359.00 |
10 | 72.41 | 21.23 | 2.25 | 0.55 | 0.72 | 1.24 | 0.65 | 1.90 | 1381.00 | 1425.00 |
11 | 75.16 | 10.28 | 11.03 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1408.00 | 1430.00 |
12 | 75.16 | 18.62 | 2.69 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1510.00 | 1540.00 |
13 | 75.16 | 1.95 | 19.36 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1474.00 | 1493.00 |
14 | 90.19 | 2.34 | 3.23 | 0.23 | 0.20 | 0.42 | 0.43 | 1.20 | 1510.00 | 1540.00 |
15 | 75.16 | 18.62 | 2.69 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1483.00 | 1515.00 |
16 | 75.16 | 14.45 | 6.86 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1463.00 | 1487.00 |
17 | 75.16 | 10.28 | 11.03 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1408.00 | 1430.00 |
18 | 75.16 | 6.12 | 15.19 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1405.00 | 1427.00 |
19 | 75.16 | 1.95 | 19.36 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1438.00 | 1456.00 |
20 | 75.16 | 1.95 | 19.36 | 0.27 | 0.17 | 0.35 | 0.36 | 1.20 | 1474.00 | 1493.00 |
21 | 23.63 | 22.30 | 33.59 | 2.37 | 0.79 | 0.05 | 12.49 | 1.76 | 1272.00 | 1290.00 |
1 | Li J, Zhuang X G, Querol X, et al. Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China[J]. Fuel, 2012, 95: 446-456. |
2 | Li G Y, Wang C A, Yan Y, et al. Release and transformation of sodium during combustion of Zhundong coals[J]. Journal of the Energy Institute, 2016, 89(1): 48-56. |
3 | 段晓丽, 张彦迪, 朱晨钊, 等. 五彩湾煤在O2/CO2燃烧条件下的积灰特性[J]. 洁净煤技术, 2019, 25(2): 53-61. |
Duan X L, Zhang Y D, Zhu C Z, et al. Ash deposition characteristics of Wucaiwan coal under the combustion condition of O2/CO2 [J]. Clean Coal Technology, 2019, 25(2): 53-61. | |
4 | Liu X, Yu G S, Xu J L, et al. Viscosity fluctuation behaviors of coal ash slags with high content of calcium and low content of silicon[J]. Fuel Processing Technology, 2017, 158: 115-122. |
5 | 郑忆南, 陆海峰, 郭晓镭, 等. 气流床煤气化细灰流动特性研究[J]. 高校化学工程学报, 2018, 32(1): 108-116. |
Zheng Y N, Lu H F, Guo X L, et al. Study on flow properties of fine ash from entrained-flow coal gasification[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 108-116. | |
6 | Laxminarayan Y, Jensen P, Wu H, et al. Biomass fly ash deposition in an entrained flow reactor[J]. Proceedings of the Combustion Institute, 2019, 37(3): 2689-2696. |
7 | Yang X, Ingham D, Ma L, et al. Prediction of particle sticking efficiency for fly ash deposition at high temperatures[J]. Proceedings of the Combustion Institute, 2019, 37(3): 2995-3003. |
8 | 兰泽全, 曹欣玉, 刘建忠, 等. 灰污热流探针模拟锅炉受热面灰沉积的研究[J]. 燃料化学学报, 2008, 36(1): 30-35. |
Lan Z Q, Cao X Y, Liu J Z, et al. Simulation of ash depositing in heat transfer surface with heat flux probe[J]. Journal of Fuel Chemistry and Technology, 2008, 36(1): 30-35. | |
9 | Huang L, Zhang X X, Kong L X, et al. Formation of fine particles (PM10) from Zhundong high-sodium coal at entrained flow gasification condition in a flat-flame burner reactor[J]. Fuel Processing Technology, 2022, 231: 107225. |
10 | Ruan R H, Tan H Z, Wang X B, et al. Characteristic of particulate matter from combustion of Zhundong lignite: a comparison between air and oxy-fuel atmospheres[J]. Energy & Fuels, 2019, 33: 12260-12269. |
11 | Kleinhans U, Wieland C, Frandsen F J, et al. Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior[J]. Progress in Energy and Combustion Science, 2018, 68: 65-168. |
12 | 盛新, 纪明俊, 韩启元, 等. Shell煤气化飞灰粘附特性影响因素探讨[J]. 安徽理工大学学报(自然科学版), 2009, 29(2): 42-46. |
Sheng X, Ji M J, Han Q Y, et al. Study on the factors influencing fly ash deposition in shell coal gasification process[J]. Journal of Anhui University of Science and Technology (Natural Science), 2009, 29(2): 42-46. | |
13 | Shi W J, Laabs M, Reinmöller M, et al. In-situ analysis of the effect of CaO/Fe2O3 addition on ash melting and sintering behavior for slagging-type applications[J]. Fuel, 2021, 285: 119090. |
14 | 杨鑫, 黄戒介, 房倚天, 等. 无烟煤流化床气化飞灰的结渣特性[J]. 燃料化学学报, 2013, 41(1): 1-8. |
Yang X, Huang J J, Fang Y T, et al. Slagging characteristics of fly ash from anthracite gasification in fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 1-8. | |
15 | Yang Y P, Lin X C, Chen X J, et al. The formation of deposits and their evolutionary characteristics during pressurized gasification of Zhundong coal char[J]. Fuel, 2018, 224: 469-480. |
16 | 曾宪鹏. 准东煤燃烧过程中灰的生成、沉积及控制机理研究[D]. 武汉: 华中科技大学, 2019. |
Zeng X P. Study on formation, deposition and control mechanism of ash in Zhundong coal combustion process[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
17 | 周上坤, 王萌, 谭厚章, 等. 蛭石对高钠高钙准东煤结渣特性影响研究[J]. 燃料化学学报, 2019, 47(4): 419-427. |
Zhou S K, Wang M, Tan H Z, et al. Effect of vermiculite on the slagging characteristics of high sodium and high calcium Zhundong coal[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 419-427. | |
18 | Xu L L, Liu J, Kang Y, et al. Safely burning high alkali coal with Kaolin additive in a pulverized fuel boiler[J]. Energy & Fuels, 2014, 28(9): 5640-5648. |
19 | 曾宪鹏, 于敦喜, 徐静颖, 等. 添加高岭土对准东煤燃烧PM1生成影响的研究[J]. 工程热物理学报, 2015, 36(11): 2522-2526. |
Zeng X P, Yu D X, Xu J Y, et al. Study on the effect of kaolin addition on the PM1 formation during a Zhundong coal combustion[J]. Journal of Engineering Thermophysics, 2015, 36(11): 2522-2526. | |
20 | Niu Y Q, Gong Y H, Zhang X, et al. Effects of leaching and additives on the ash fusion characteristics of high-Na/Ca Zhundong coal[J]. Journal of the Energy Institute, 2019, 92(4): 1115-1122. |
21 | Binner E, Jiao F C, Chen L G, et al. Effect of coal drying on the behavior of inorganic species during Victorian brown coal pyrolysis and combustion[J]. Energy & Fuels, 2011, 25: 2764-2771. |
22 | Zhou S K, Wang M, Tan H Z, et al. Evaluation of aluminum ash in alleviating the ash deposition of high-sodium and high-iron coal[J]. Fuel, 2020, 273: 117701. |
23 | 魏博, 谭厚章, 王学斌, 等. 煤燃烧过程中复杂气氛下的灰熔融特性[J]. 燃烧科学与技术, 2017, 23(4): 320-324. |
Wei B, Tan H Z, Wang X B, et al. Ash fusion characteristics under complex atmosphere in coal combustion process[J]. Journal of Combustion Science and Technology, 2017, 23(4): 320-324. | |
24 | Li D F, Deng Q K, Lee D, et al. Prediction of attrition rate of coal ash for fluidized bed based on chemical composition with an artificial neural network model[J]. Fuel Processing Technology, 2022, 225: 107024. |
25 | 邱钱粮, 白向飞. 基于遗传算法优化的BP神经网络气化用煤灰流动温度预测模型[J]. 煤炭转化, 2023, 46(2): 109-118. |
Qiu Q L, Bai X F. Prediction model of fusion temperature of coal ash for gasification based on GA-BP neural network[J]. Coal Conversion, 2023, 46(2): 109-118. | |
26 | Yan T G, Kong L X, Bai J, et al. Thermomechanical analysis of coal ash fusion behavior[J]. Chemical Engineering Science, 2016, 147(22): 74-82. |
27 | Shi W J, Bai J, Kong L X, et al. Effect of CaO/Fe2O3 ratio on fusibility of coal ashes with high silica and alumina levels and prediction[J]. Fuel, 2020, 260:116369. |
28 | Mclennan A R, Bryant G W, Bailey C W, et al. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions[J]. Energy & Fuels, 2000, 14(2): 308-315. |
29 | Fan H L, Li F H. Ash fusion temperature regulation mechanism of Xiangyang coal by coal blending[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(3): 2055-2066. |
30 | Qi X B, Song G L, Song W J, et al. Effect of bed materials on slagging and fouling during Zhundong coal gasification[J]. Energy Exploration & Exploitation, 2017, 35(5): 558-578. |
31 | Yuan Z S, Wang J, Kong L X, et al. Comparison study of fusibility between coal ash and synthetic ash[J]. Fuel Processing Technology, 2021, 211:106593. |
32 | Zhao B T, Zhang Z X, Wu X J. Prediction of coal ash fusion temperature by least-squares support vector machine model[J]. Energy & Fuels, 2010, 24: 3066-3071. |
33 | Tripathi H S, Mukherjee B, Das S K, et al. Effect of sillimanite beach sand composition on mullitization and properties of Al2O3-SiO2 system[J]. Bulletin of Materials Science, 2003, 26(2): 217-220. |
34 | 李珍, 许东明, 阳雅丽, 等. 硅线石及其尾矿利用研究[J]. 中国陶瓷, 2016, 52(5): 1-5. |
Li Z, Xu D M, Yang Y L, et al. Research on sillimanite and applications of its tailings[J]. China Ceramics, 2016, 52(5): 1-5. | |
35 | 曹希. 高温下水蒸气对煤灰流动性的影响规律及机理研究[D]. 北京:中国科学院大学,2020. |
Cao X. Study on the influence law and mechanism of steam on the fluidity of coal ash at high temperature[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
36 | 石文举, 白进, 孔令学, 等. 不同气氛下Ca-Fe二元助剂改变高硅铝煤灰熔融温度的规律和机制[J]. 化工学报, 2022, 73(10): 4638-4647. |
Shi W J, Bai J, Kong L X, et al. Law and mechanism of Ca-Fe binary additives changing the melting temperature of high silicon aluminum coal ash in different atmospheres [J]. CIESC Journal, 2022, 73(10): 4638-4647. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Wenxiang NI, Jing ZHAO, Bo LI, Xiaolin WEI, Dongyin WU, Di LIU, Qiang WANG. Study on waste heat boiler ash deposition characteristics in sensible heat recovery process of converter gas [J]. CIESC Journal, 2023, 74(8): 3485-3493. |
[7] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[8] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[9] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[10] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[11] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
[12] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[13] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[14] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[15] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||