CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5506-5514.DOI: 10.11949/0438-1157.20200124
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
HUO Xiaoqian1,2(),XU Ying1,2(),WANG Jinghan1,2,ZHANG Tao1,2,MAIMAITI Aikebaier3,WANG Xigang4
Received:
2020-02-10
Revised:
2020-09-26
Online:
2020-12-05
Published:
2020-12-05
Contact:
XU Ying
霍小倩1,2(),徐英1,2(),汪晶晗1,2,张涛1,2,艾克拜尔·麦麦提3,王锡钢4
通讯作者:
徐英
作者简介:
霍小倩(1995—),女,硕士研究生,基金资助:
CLC Number:
HUO Xiaoqian,XU Ying,WANG Jinghan,ZHANG Tao,MAIMAITI Aikebaier,WANG Xigang. Study on pressure drop characteristics of gas-liquid swirl annular flow[J]. CIESC Journal, 2020, 71(12): 5506-5514.
霍小倩,徐英,汪晶晗,张涛,艾克拜尔·麦麦提,王锡钢. 气液螺旋环状流压降特性研究[J]. 化工学报, 2020, 71(12): 5506-5514.
Add to citation manager EndNote|Ris|BibTeX
参数 | 误差/% |
---|---|
压力 | 0.05 |
温度 | 0.10 |
液相流量 | 0.35 |
气相流量 | 0.50 |
压力差 | 0.06 |
Table 1 Uncertainty of measured and calculated parameters
参数 | 误差/% |
---|---|
压力 | 0.05 |
温度 | 0.10 |
液相流量 | 0.35 |
气相流量 | 0.50 |
压力差 | 0.06 |
Usg /(m/s) | Usl /(m/s) | LVF/% |
---|---|---|
10 | 0.2—0.5 | 2.0—4.8 |
11 | 0.1—0.5 | 1.0—4.4 |
12 | 0.1—0.5 | 0.8—4.0 |
13 | 0.2—0.5 | 1.6—3.7 |
14 | 0.1—0.5 | 0.7—3.4 |
15 | 0.2—0.5 | 1.3—3.2 |
16 | 0.1—0.5 | 0.6—3.0 |
Table 2 Scope of swirl flow experiments (18℃,101.325 kPa)
Usg /(m/s) | Usl /(m/s) | LVF/% |
---|---|---|
10 | 0.2—0.5 | 2.0—4.8 |
11 | 0.1—0.5 | 1.0—4.4 |
12 | 0.1—0.5 | 0.8—4.0 |
13 | 0.2—0.5 | 1.6—3.7 |
14 | 0.1—0.5 | 0.7—3.4 |
15 | 0.2—0.5 | 1.3—3.2 |
16 | 0.1—0.5 | 0.6—3.0 |
物理量 | 符号 | 单位 | 量纲 |
---|---|---|---|
气液两相直流压降 | Δptp | Pa | ML-1T-2 |
螺旋环状流压降 | Δptp.s | Pa | ML-1T-2 |
气相质量流量 | mg | kg/s | MT-1 |
液相质量流量 | ml | kg/s | MT-1 |
气相密度 | ρg | kg/m3 | ML-3 |
液相密度 | ρl | kg/m3 | ML-3 |
气相动力黏度 | μg | Pa·s | ML-1T-2 |
液相动力黏度 | μl | Pa·s | ML-1T-2 |
液相表面张力 | σl | N/m | MT-2 |
管道直径 | D | m | L |
起旋器螺距 | G | m | L |
重力加速度 | g | m/s2 | LT-2 |
Table 3 Parameters and their signs, units and dimensions
物理量 | 符号 | 单位 | 量纲 |
---|---|---|---|
气液两相直流压降 | Δptp | Pa | ML-1T-2 |
螺旋环状流压降 | Δptp.s | Pa | ML-1T-2 |
气相质量流量 | mg | kg/s | MT-1 |
液相质量流量 | ml | kg/s | MT-1 |
气相密度 | ρg | kg/m3 | ML-3 |
液相密度 | ρl | kg/m3 | ML-3 |
气相动力黏度 | μg | Pa·s | ML-1T-2 |
液相动力黏度 | μl | Pa·s | ML-1T-2 |
液相表面张力 | σl | N/m | MT-2 |
管道直径 | D | m | L |
起旋器螺距 | G | m | L |
重力加速度 | g | m/s2 | LT-2 |
流动形态 | C |
---|---|
v-v | 5 |
v-t | 10 |
t-v | 12 |
t-t | 20 |
Table 5 C value in Chisholm model[26]
流动形态 | C |
---|---|
v-v | 5 |
v-t | 10 |
t-v | 12 |
t-t | 20 |
1 | 孙西欢. 水平轴圆管螺旋流水力特性及固粒悬浮机理试验研究[D]. 西安: 西安理工大学, 2000. |
Sun X H. Experimental research on the hydraulic characteristics and particle suspended mechanics in spiral pipe flow with horizontal axis[D]. Xian: Xian University of Technology, 2000. | |
2 | Boushaki T, Koched A, Mansouri Z, et al. Volumetric velocity measurements (V3V) on turbulent swirling flows[J]. Flow Measurement and Instrumentation, 2017, 54: 46-55. |
3 | Narasimha M, Brennan M, Holtham P N. A review of CFD modelling for performance predictions of hydrocyclone[J]. Engineering Applications of Computational Fluid Mechanics, 2007, 1(2): 109-125. |
4 | Molina R, Wang S, Gomez L E, et al. Wet gas separation in gas-Liquid cylindrical cyclone separator[J]. Journal of Energy Resources Technology, 2008, 130(4): 042701. |
5 | 周闻, 王康松, 鄂承林, 等.多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573. |
Zhou W, Wang K S, E C L, et al. Multi-spiral gas-liquid vortex separator pressure drop characteristics test[J]. CIESC Journal, 2019, 70(7): 2564-2573. | |
6 | 高思鸿, 张丹丹, 范怡平, 等.气体干法净化旋流吸附耦合设备压降特性[J]. 化工学报, 2018, 69(5): 1873-1883. |
Gao S H, Zhang D D, Fan Y P, et al. Pressure drop characteristics of dry gas purification process in a coupled apparatus of cyclone and granular bed filter/adsorber[J]. CIESC Journal, 2018, 69(5): 1873-1883. | |
7 | 刘鸿雁, 韩天龙, 王亚, 等.水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088. |
Liu H Y, Han T L, Wang Y, et al. Influence of new outlet configurations with baffle on hydrocycloneon separation performance[J]. CIESC Journal, 2018, 69(5): 2081-2088. | |
8 | 陈建磊, 何利民, 罗小明, 等.柱状旋流分离器零轴速面分布特性模拟分析[J]. 化工学报, 2013, 64(9): 3241-3249. |
Chen J L, He L M, Luo X M, et al. Simulation of zero axial velocity surface distribution in cylindrical cyclone separator, CIESC Journal, 2013, 64(9): 3241-3249. | |
9 | Akhavan-Behabadi M A, Kumar R, Mohammadpour A, et al. Effect of twisted tape insert on heat transfer and pressure drop in horizontal evaporators for the flow of R-134a[J]. International Journal of Refrigeration, 2009, 32(5): 922-930. |
10 | Kanizawa F T, Mogaji T S, Ribatski G. Evaluation of the heat transfer enhancement and pressure drop penalty during flow boiling inside tubes containing twisted tape insert[J]. Applied Thermal Engineering, 2014, 70(1): 328-340. |
11 | Liang F, Fang Z, Chen J, et al. Investigating the liquid film characteristics of gas-liquid swirling flow using ultrasound doppler velocimetry[J]. AIChE Journal, 2017, 63(6): 2348-2357. |
12 | Liang F, Wang D, Chen J, et al. Gas-liquid two-phase flow sampling measurement using a swirl sampler[J]. Flow Measurement and Instrumentation, 2013, 33: 145-152. |
13 | 王晓飞. 管内螺旋流的实验研究与分析[D]. 武汉: 武汉理工大学, 2004. |
Wang X F. Experimental study and analysis of spiral flow in pipes[D]. Wuhan: Wuhan University of Technology, 2004. | |
14 | Gupta A K, Lilley D G, Syred N. Swirl Flows[M]. Kent, England: Abacus Press, 1984. |
15 | Kreith F, Sonju O. The decay of a turbulent swirl in a pipe[J]. Journal of Fluid Mechanics, 1965, 22(2): 257-271. |
16 | Li H, Tomita Y. Characteristics of swirling flow in a circular pipe[J]. ASME J. Fluids Eng., 1994, 116(2): 370-373. |
17 | 李会雄, 周芳德, 陈学俊.管内切向旋流的衰减特性研究[J].西安: 西安交通大学学报, 1995, 29(11): 12-18. |
Li H X, Zhou F D, Chen X J. Study on decay characteristics of tangential swirl in tube[J]. Xian: Journal of Xian Jiaotong University, 1995, 29(11): 12-18. | |
18 | Steenbergen W, Voskamp J. The rate of decay of swirl in turbulent pipe flow[J]. Flow Measurement and Instrumentation, 1998, 9(2): 67-78. |
19 | Najafi A F, Mousavian S M, Amini K. Numerical investigations on swirl intensity decay rate for turbulent swirling flow in a fixed pipe[J]. International Journal of Mechanical Sciences, 2011, 53(10): 801-811. |
20 | Rocha A D, Bannwart A C, Ganzarolli M M, et al. Numerical and experimental study of an axially induced swirling pipe flow[J]. International Journal of Heat and Fluid Flow, 2015, 53: 81-90. |
21 | Lavante E V, Yao J. Numerical investigation of turbulent swirling flows in axisymmetric internal flow configurations[J]. Flow Measurement and Instrumentation, 2012, 25: 63-68. |
22 | Huo X Q, Xu Y, Zhang T, et al. Research on the pressure drop characteristics of spiral flow in horizontal straight pipe[C]// 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2019. |
23 | Liu W, Bai B. Swirl decay in the gas-liquid two-phase swirling flow inside a circular straight pipe[J]. Experimental Thermal and Fluid Science, 2015, 68: 187-195. |
24 | Rao Y, Sun Y, Wang S. Numerical simulation study on the law of attenuation of hydrate particles in a gas transmission pipeline[J]. Energies, 2017, 12: 1-17. |
25 | Katao H, Shinkai Y, Tomiyama A. Pressure drop in two-phase swirling flow in a steam separator[J]. JPES, 2009, 3(2): 382-392. |
26 | Rao Y C, Liang J, Wang S L, et al. Experimental study on the frictional resistance of gas-liquid two-phase spiral flow generated by vane[J]. Chinese Journal of Hydrodynamics (A), 2017, 32(1): 88-95. |
27 | Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. |
28 | Zhao Z, Liao R Q, Liu J. Dynamics and effective distance of gas-liquid two-phase swirling flow induced by vortex tools[J]. Advances in Mechanical Engineering, 2018, 10(9): 1-11. |
29 | Xu Y, Yuan C, Long C, et al. Research the wet gas flow measurement based on dual-throttle device[J]. Flow Meas. Instrum., 2013, 34: 68-75. |
30 | Xu Y, Wei J, Liu G, et al. Pressure drop of the gas-liquid two-phase stratified flow in horizontal pipes: an experimental study [J]. Natural Gas Industry, 2015, 35(2): 92-99. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[3] | Jianzhao BAI, Zixuan GUO, Dewu WANG, Yan LIU, Ruojin WANG, Meng TANG, Shaofeng ZHANG. Effect of roll on pressure drop in concurrent gas-liquid columns with tridimensional rotational flow sieve tray [J]. CIESC Journal, 2023, 74(2): 707-720. |
[4] | Yanfang YU, Huanchen LIU, Huibo MENG, Litu LIU, Yu LI, Jianhua WU. Experimental investigation of turbulent dispersion and hydrodynamic behavior of bubble in Lightnin static mixer [J]. CIESC Journal, 2022, 73(8): 3565-3575. |
[5] | Hanwen XUE, Feng NIE, Yanxing ZHAO, Xueqiang DONG, Hao GUO, Jun SHEN, Maoqiong GONG. Experimental study of flow boiling pressure drop of R290 in a horizontal tube based on flow pattern [J]. CIESC Journal, 2022, 73(11): 4903-4916. |
[6] | Junqi WENG, Xinlei LIU, Jiahao YU, Yao SHI, Guanghua YE, Jin QU, Xuezhi DUAN, Jinbing LI, Xinggui ZHOU. Influence of hollow structure of honeycomb catalysts on the pressure drop in packed bed reactors [J]. CIESC Journal, 2022, 73(1): 266-274. |
[7] | SHAN He, MA Qiuming, PAN Quanwen, CAO Weiliang, WANG Qiang, WANG Ruzhu. Simulation of heat transfer performance in the coolant side of a novel chiller for electric vehicles thermal management system [J]. CIESC Journal, 2021, 72(S1): 194-202. |
[8] | LIU Zhen, DU Huadong, HU Xu, JI Zhongli. Experimental investigation of influence of high-pressure condition on filtration performance of natural gas filter cartridge [J]. CIESC Journal, 2021, 72(5): 2669-2679. |
[9] | MAO Taoyan, ZOU Minting, ZHENG Cheng, ZENG Zhaowen, WU Xuxian, XIAO Runhui, PENG Siyu. A kinetics model of dimensionless criterion for microwave chemical reaction:a case study of the decomposition reaction of AIBA hydrochloride [J]. CIESC Journal, 2021, 72(3): 1364-1371. |
[10] | Peng TIAN,Dewu WANG,Ruojin WANG,Meng TANG,Xiaolei HAO,Shaofeng ZHANG. Gas-solid flow characteristics in the rolling fluidized-bed [J]. CIESC Journal, 2021, 72(10): 5102-5113. |
[11] | Yaxin ZHAO,Zhancheng LAI,Haitao HU. Flow boiling heat transfer and pressure drop characteristics of R1234ze(E) in metal foam filled tubes [J]. CIESC Journal, 2021, 72(10): 5074-5081. |
[12] | Jingzhi ZHANG, Naixiang ZHOU, Guanmin ZHANG, Maocheng TIAN. Flow characteristics of liquid-liquid Taylor flow in mini channels with circular and flat cross-sections: a numerical study [J]. CIESC Journal, 2020, 71(S2): 70-79. |
[13] | Pengcheng HE, Li ZHUANG, Liang HU, Gang LIU, Ruiqi WANG, Yaqiang BAO. Discussion on method of engineering computation of plate-fin heat exchanger pressure characteristic [J]. CIESC Journal, 2020, 71(S1): 172-178. |
[14] | Kuan YANG, Changqi YAN, Xiaxin CAO. Subcooled flow boiling resistance characteristics in narrow rectangular channel under natural circulation condition [J]. CIESC Journal, 2020, 71(7): 3060-3070. |
[15] | Shuang LI, Yuxing LI, Dongxu WANG, Quan WANG. Flow patterns and pressure drop characteristics on high-viscosity oil and gas two-phase flow in upward pipe [J]. CIESC Journal, 2020, 71(3): 983-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||