CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1364-1371.DOI: 10.11949/0438-1157.20200719
• Catalysis, kinetics and reactors • Previous Articles Next Articles
MAO Taoyan1(),ZOU Minting1,ZHENG Cheng1,2(),ZENG Zhaowen1,WU Xuxian1,XIAO Runhui1,PENG Siyu1
Received:
2020-06-09
Revised:
2020-10-25
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHENG Cheng
毛桃嫣1(),邹敏婷1,郑成1,2(),曾昭文1,伍旭贤1,肖润辉1,彭思玉1
通讯作者:
郑成
作者简介:
毛桃嫣(1986—),女,博士,讲师,基金资助:
CLC Number:
MAO Taoyan, ZOU Minting, ZHENG Cheng, ZENG Zhaowen, WU Xuxian, XIAO Runhui, PENG Siyu. A kinetics model of dimensionless criterion for microwave chemical reaction:a case study of the decomposition reaction of AIBA hydrochloride[J]. CIESC Journal, 2021, 72(3): 1364-1371.
毛桃嫣, 邹敏婷, 郑成, 曾昭文, 伍旭贤, 肖润辉, 彭思玉. 微波化学反应的无量纲准数动力学模型研究:以偶氮二异丁脒盐酸盐(AIBA)分解反应为例[J]. 化工学报, 2021, 72(3): 1364-1371.
Add to citation manager EndNote|Ris|BibTeX
物理参数 | 符号 | 单位 | 量纲 |
---|---|---|---|
反应速率 | mol·m-3·s-1 | NT-1L-1 | |
功率密度 | p | W·m-3 | ML-1T-3 |
黏度 | μ | Pa·s | ML-1T-1 |
密度 | ρ | kg·m-3 | ML-3 |
反应物浓度 | CA | mol·m-3 | NL-3 |
温度 | T | K | Θ |
损耗角正切 | 1 | ||
微波频率 | f | Hz | T-1 |
热导率 | λ | W·m-1·K-1 | MLT-3Θ-1 |
Table 1 Dimension of various parameters
物理参数 | 符号 | 单位 | 量纲 |
---|---|---|---|
反应速率 | mol·m-3·s-1 | NT-1L-1 | |
功率密度 | p | W·m-3 | ML-1T-3 |
黏度 | μ | Pa·s | ML-1T-1 |
密度 | ρ | kg·m-3 | ML-3 |
反应物浓度 | CA | mol·m-3 | NL-3 |
温度 | T | K | Θ |
损耗角正切 | 1 | ||
微波频率 | f | Hz | T-1 |
热导率 | λ | W·m-1·K-1 | MLT-3Θ-1 |
水-乙醇体积比 | 沸点/K | 密度/ (kg·m-3) | 黏度/ (Pa·s) | 热导率/ (W·m-1·K-1) |
---|---|---|---|---|
1.5∶8.5(500 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(500 W) | 363.8 | 947.8 | 0.319×10-3 | 0.594 |
2.5∶7.5(500 W) | 362.1 | 944.3 | 0.327×10-3 | 0.583 |
3∶7(500 W) | 360.7 | 940.1 | 0.343×10-3 | 0.572 |
3.5∶6.5(500 W) | 358.4 | 936.2 | 0.345×10-3 | 0.560 |
1.5∶8.5(400 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(400 W) | 362.7 | 948.9 | 0.323×10-3 | 0.594 |
2.5∶7.5(400 W) | 361.1 | 945.3 | 0.331×10-3 | 0.584 |
3∶7(400 W) | 359.3 | 941.5 | 0.349×10-3 | 0.572 |
3.5∶6.5(400 W) | 357 | 937.6 | 0.351×10-3 | 0.560 |
1.5∶8.5(300 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(300 W) | 362.1 | 949.5 | 0.325×10-3 | 0.594 |
2.5∶7.5(300 W) | 360.7 | 945.7 | 0.332×10-3 | 0.584 |
3∶7(300 W) | 358.4 | 942.4 | 0.348×10-3 | 0.572 |
3.5∶6.5(300 W) | 357.3 | 937.3 | 0.350×10-3 | 0.560 |
1.5∶8.5(200 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(200 W) | 362.5 | 949.1 | 0.324×10-3 | 0.594 |
2.5∶7.5(200 W) | 360.4 | 946.0 | 0.333×10-3 | 0.584 |
3∶7(200 W) | 358.2 | 942.6 | 0.355×10-3 | 0.572 |
3.5∶6.5(200 W) | 355.5 | 939.1 | 0.357×10-3 | 0.560 |
Table 2 Physical and chemical properties of solutions with different compound proportions
水-乙醇体积比 | 沸点/K | 密度/ (kg·m-3) | 黏度/ (Pa·s) | 热导率/ (W·m-1·K-1) |
---|---|---|---|---|
1.5∶8.5(500 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(500 W) | 363.8 | 947.8 | 0.319×10-3 | 0.594 |
2.5∶7.5(500 W) | 362.1 | 944.3 | 0.327×10-3 | 0.583 |
3∶7(500 W) | 360.7 | 940.1 | 0.343×10-3 | 0.572 |
3.5∶6.5(500 W) | 358.4 | 936.2 | 0.345×10-3 | 0.560 |
1.5∶8.5(400 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(400 W) | 362.7 | 948.9 | 0.323×10-3 | 0.594 |
2.5∶7.5(400 W) | 361.1 | 945.3 | 0.331×10-3 | 0.584 |
3∶7(400 W) | 359.3 | 941.5 | 0.349×10-3 | 0.572 |
3.5∶6.5(400 W) | 357 | 937.6 | 0.351×10-3 | 0.560 |
1.5∶8.5(300 W) | 366 | 950.4 | 0.310×10-3 | 0.603 |
2∶8(300 W) | 362.1 | 949.5 | 0.325×10-3 | 0.594 |
2.5∶7.5(300 W) | 360.7 | 945.7 | 0.332×10-3 | 0.584 |
3∶7(300 W) | 358.4 | 942.4 | 0.348×10-3 | 0.572 |
3.5∶6.5(300 W) | 357.3 | 937.3 | 0.350×10-3 | 0.560 |
1.5∶8.5(200 W) | 366.2 | 950.2 | 0.309×10-3 | 0.603 |
2∶8(200 W) | 362.5 | 949.1 | 0.324×10-3 | 0.594 |
2.5∶7.5(200 W) | 360.4 | 946.0 | 0.333×10-3 | 0.584 |
3∶7(200 W) | 358.2 | 942.6 | 0.355×10-3 | 0.572 |
3.5∶6.5(200 W) | 355.5 | 939.1 | 0.357×10-3 | 0.560 |
1 | 魏渊, 郑成, 毛桃嫣, 等. 山嵛酸双酯基有机硅季铵盐的微波合成工艺及性能[J]. 化工进展, 2018, 37(8): 3169-3178. |
Wei Y, Zheng C, Mao T Y, et al. Microwave synthesis process and properties of behenic acid diester-based silicone quaternary ammonium salt [J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3169-3178. | |
2 | Liu S, Mei L, Liang X, et al. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29467-29475. |
3 | Chen W, Zhang A, Gu Z, et al. Enhanced degradation of refractory organics in concentrated landfill leachate by FeO/H2O2 coupled with microwave irradiation[J]. Chemical Engineering Journal, 2018, 354: 680-691. |
4 | Ao W, Fu J, Mao X, et al. Microwave assisted preparation of activated carbon from biomass: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 958-979. |
5 | Gao X, Li X, Zhang J, et al. Influence of a microwave irradiation field on vapor–liquid equilibrium[J]. Chemical Engineering Science, 2013, 90: 213-220. |
6 | 赵振宇, 李洪, 李鑫钢, 等. 基于介电性质差异的微波诱导强化蒸馏分离[J]. 化工进展, 2020, 39(6): 2275-2283. |
Zhao Z N, Li H, Li X G, et al. Microwave-induced enhancement of distillation separation based on dielectric properties difference[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2275-2283. | |
7 | 凌慧, 郑成, 毛桃嫣, 等. 响应面法优化微波辅助合成中碳链甘油三酯工艺 [J]. 化工学报, 2016, 67: 231-244. |
Ling H, Zheng C, Mao T Y, et al. Optimization of microwave-assisted synthesis of medium-chain triacylalycerols using response surface methodology[J]. CIESC Journal, 2016, 67: 231-244. | |
8 | Hillman F, Zimmerman J M, Paek S-M, et al. Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers[J]. Journal of Materials Chemistry A, 2017, 5(13): 6090-6099. |
9 | Xin Z, Li L, Zhang X, et al. Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production[J]. RSC Advances, 2018, 8(11): 6027-6038. |
10 | Makhado E, Pandey S, Ramontja J. Microwave assisted synthesis of xanthan gum-cl-poly (acrylic acid) based-reduced graphene oxide hydrogel composite for adsorption of methylene blue and methyl violet from aqueous solution[J]. International Journal of Biological Macromolecules, 2018, 119: 255-269. |
11 | Le T, Ju S, Koppala S, et al. Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution[J]. Journal of Alloys and Compounds, 2018, 749: 652-663. |
12 | 雷向欣, 李俊, 沈瀛坪. 微波对乙酸甲酯水解的作用及反应动力学研究[J]. 化学反应工程与工艺, 2002, 18(2): 97-102. |
Lei X X, Li J, Shen Y P. Study on the hydrolysis of methyl acetate under the influence of microwave and the kinetics[J]. Chemical Reaction Engineering and Technology, 2002, 18(2): 97-102. | |
13 | 熊俊, 潘晶莹, 吕秀阳. 微波作用下苄苯醚催化转移氢解反应动力学[J]. 化工学报, 2012, 63(5): 1437-1442. |
Xiong J, Pan J Y, Lü X Y. A kinetics study on microwave-assisted catalytic hydrogenolysis of benzyl phenyl ether[J]. CIESC Journal, 2012, 63(5): 1437-1442. | |
14 | 丁志伟, 丁辉, 侯钧. 微波作用下的乙酸乙酯合成反应动力学[J]. 化学反应工程与工艺, 2012, 28(5): 458-463. |
Ding Z W, Ding H, Hou J. Kinetics of catalytic synthesis of ethyl acetate under microwave irradiation[J]. Chemical Reaction Engineering and Technology, 2012, 28(5): 458-463. | |
15 | Sturm G S J, Verweij M D, van Gerven T, et al. On the effect of resonant microwave fields on temperature distribution in time and space[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3800-3811. |
16 | Patil N G, Benaskar F, Meuldijk J, et al. Microwave assisted flow synthesis: coupling of electromagnetic and hydrodynamic phenomena[J]. AIChE Journal, 2014, 60(11): 3824-3832. |
17 | Zhu J, Kuznetsov A V, Sandeep K P. Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters)[J]. International Journal of Thermal Sciences, 2007, 46(4): 328-341. |
18 | Wu Y, Hong T, Tang Z, et al. Dynamic model for a uniform microwave-assisted continuous flow process of ethyl acetate production[J]. Entropy, 2018, 20(4): 241. |
19 | de Bruyn M, Budarin V L, Sturm G S J, et al. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor[J]. J. Am. Chem. Soc., 2017, 139(15): 5431-5436. |
20 | Prosetya H, Datta A. Batch microwave heating of liquids: an experimental study[J]. Journal of Microwave Power and Electromagnetic Energy, 1991, 26(4): 215-226. |
21 | Gao X, Shu D, Li X, et al. Improved film evaporator for mechanistic understanding of microwave-induced separation process[J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 759-771. |
22 | Smith A D, Lester E H, Thurecht K J, et al. Temperature dependence of the dielectric properties of 2, 2′-azobis(2-methyl-butyronitrile) (ambn)[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 3011-3014. |
23 | Liu J, Jia G, Lu Z. Dielectric properties of pyridine derivative-water clusters: molecular dynamics simulation[J]. Journal of Molecular Liquids, 2017, 241: 984-991. |
24 | Ergan B T, Bayramoğlu M. The effects of microwave power and dielectric properties on the microwave-assisted decomposition kinetics of AIBN in n-butanol[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 299-304. |
25 | Li H, Cui J, Liu J, et al. Mechanism of the effects of microwave irradiation on the relative volatility of binary mixtures[J]. AIChE Journal, 2017, 63(4): 1328-1337. |
26 | 汤建伟, 许秀成, 张宝林, 等. 微波作用磷矿分解反应动力学研究[J]. 化工矿物与加工, 2006, 35(4): 10-13. |
Tang J W, Xu X C, Zhang B L, et al. Study on the kinetics of dissolving reaction of phosphate ore under microwave-induced enhancement[J]. Industrial Minerals & Processing, 2006, 35(4): 10-13. | |
27 | 汤建伟, 张宝林, 范秀山, 等. 微波作用下酸解磷矿动力学模型研究[J]. 化学反应工程与工艺, 2007, 23(2): 114-119. |
Tang J W, Zhang B L, Fan X S, et al. Kinetic model of acid dissolving reaction of phosphate rock by microwave induced enhancement[J]. Chemical Reaction Engineering and Technology, 2007, 23(2): 114-119. | |
28 | 杨晓庆. 微波与化学反应体系相互作用过程中的特殊效应研究[D]. 成都: 四川大学, 2006. |
Yang X Q. Study on specific effect in the interaction between microwave and chemical reaction[D]. Chengdu: Sichuan University, 2006. | |
29 | 郑成, 毛桃嫣, 卫云路, 等. 沸腾状态下十二烷基甲基二羟乙基溴化铵微波合成的动力学研究[J]. 精细化工, 2009, 26(2): 131-135. |
Zheng C, Mao T Y, Wei Y L, et al. Study on the kinetics of the synthesis of dodecymethyldihydroxyethyl ammonium Bromide[J]. Fine Chemicals, 2009, 26(2): 131-135. | |
30 | Dudley G B, Richert R, Stiegman A E. On the existence of and mechanism for microwave-specific reaction rate enhancement[J]. Chem. Sci., 2015, 6(4): 2144-2152. |
31 | Dudley G B, Stiegman A E. Changing perspectives on the strategic use of microwave heating in organic synthesis[J]. Chem. Rec., 2018, 18(3): 381-389. |
32 | Costa C, Santos V H S, Araujo P H H, et al. Rapid decomposition of a cationic azo-initiator under microwave irradiation[J]. Journal of Applied Polymer Science, 2010, 118(3): 1421-1429. |
33 | 潘鹤林, 宗原, 黄婕. 《化工原理》课程中的量纲分析法[J]. 教育教学论坛, 2019, (2): 165-167. |
Pan H L, Zong Y, Huang J. Dimensional analysis means in the principles of “Chemical Engineering” [J]. Education Teaching Forum, 2019, (2): 165-167. | |
34 | 邵友元. 对量纲分析法与π定理的理解与应用[J]. 东莞理工学院学报, 2010, 17(3): 106-109. |
Shao Y Y. Comprehension and application for dimensional analysis and rule π[J]. Journal of Dongguan University of Technology, 2010, 17(3): 106-109. | |
35 | 刘宝平. 量纲分析法在物理建模与计算分析中的应用研究[J]. 太原学院学报(自然科学版), 2019, 37(1): 31-35. |
Liu B P. Application research of dimensional analysis method in physical modeling and computational analysis [J]. Journal of Taiyuan University(Natural Science Edition), 2019, 37(1): 31-35. | |
36 | 吴学勇. 量纲分析方法应用研究[J]. 甘肃高师学报, 2000, 5(2): 40-43. |
Wu X Y. Application research of dimensional analysis method [J]. Journal of Gansu Normal University, 2000, 5(2): 40-43. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[3] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[4] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[5] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[6] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[7] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[8] | Qianshi SONG, Xiaowei WANG, Wei ZHANG, Xiaohan WANG, Haowen LI, Yu QIAO. Catalytic/inhibitory effects of inorganic elements on biomass char-CO2 gasification reactivity and model construction [J]. CIESC Journal, 2022, 73(11): 5240-5250. |
[9] | ZHANG Muxing, ZHANG Xiaosong, DING Ye, SONG Yi. Molecular dynamics study on influence of interlayer spacing of nanoporous graphene oxide membrane on electrodialysis based air dehumidification [J]. CIESC Journal, 2021, 72(S1): 63-69. |
[10] | ZHANG Mengfei, ZHANG Ling, LI Xiaochuang, ZU Yunqiu, HUANG Ming, SHI Xianzhang, LIU Chuntai. Simulation and experimental study on non-isothermal vulcanization process of thick-walled rubber products [J]. CIESC Journal, 2021, 72(4): 2065-2075. |
[11] | LI Chaofan, WEN Yujuan, CAO Nan, SUN Dong, SONG Xiaoming, YANG Yuesuo. Biodegradation kinetics of p-nitrophenol at low-temperature [J]. CIESC Journal, 2021, 72(3): 1692-1701. |
[12] | YANG Shi, CAI Yang, LI Changping, LI Xuehui. Preparation of phosphotungstic acid loaded Zr-based metal-organic framework PTA@MOF-808 and its adsorption desulfurization performance [J]. CIESC Journal, 2021, 72(3): 1722-1731. |
[13] | WANG Yuejie, LI Lingling, HE Chunhong. Review on the bioleaching of spent refinery catalysts for metals removal [J]. CIESC Journal, 2021, 72(2): 901-912. |
[14] | Shuangchen MA, Quan ZHOU, Jianzong CAO, Qi LIU, Wentong CHEN, Shuaijun FAN, Yakun YAO, Chenyu LIN, Caini MA. Modeling and simulation of wet desulfurization system dynamic process [J]. CIESC Journal, 2020, 71(8): 3741-3751. |
[15] | Peng WANG, Jinglei LIU, Shengzhong ZHANG, Dequan FAN, Ying ZHANG, Hong XU. Effect of structured 5A molecular sieve adsorption bed structure and process parameters on N2/H2 adsorption performance [J]. CIESC Journal, 2020, 71(7): 3114-3122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||