The performance of nitrogen removal and electricity generation of a novel bio-electrochemical-granular sludge reactor at different influent nitrogen concentration was investigated. The impact mechanism of granular sludge, key enzyme activity, extracellular polymer composition and microbial community distribution were systematically studied. The results showed that COD, NO3--N, NO2--N and dissolved methane were efficiently removed in stages Ⅰ, Ⅱ, Ⅲ and Ⅳ (Influent NO3--N and NO2--N concentrations were 60 and 20 mg·L-1, 100 and 40 mg·L-1, 140 and 60 mg·L-1, 180 and 80 mg·L-1, respectively). The removal efficiency of COD was the highest in stage Ⅳ, and it was above 96%. The effluent concentration of NO3--N was the most stable at stage Ⅱ, and the removal efficiency was over 99%. The NO2--N removal efficiency was above 99% in each stage. In stage Ⅳ, the maximum power density and output voltage was 471.2 mV·m-3 and 608.1 mV at the fourth compartment, respectively. The polysaccharide and protein content of LB-EPS was the highest in stage Ⅱ of the fifth compartment, 13.7 mg·g-1 and 14.7 mg·g-1, respectively. Coenzyme F420 activity was the lowest in the first compartment. The protease activity of the sludge was increased due to the increase of influent nitrogen concentration. From stage Ⅰ to stage Ⅳ, the relative abundance of Protebaoteria was decreased, while the relative abundance of Chloroflexi, Firmicutes and Planctomycetes were increased. Although Thauera with denitrification effect was decreased by 8.64% in the first compartment, the nitrogen removal was still well in the reactor. The relative abundance of Methanothrix was increased to 12.3% in the fourth compartment, indicating that Methanothrix could co-exist with other bacteria in the reactor.