CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2047-2056.DOI: 10.11949/0438-1157.20201026
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
NING Jinghong(),SUN Zhaoyang,BAO Chunxiu,ZHAO Yanfeng
Received:
2020-07-27
Revised:
2020-09-30
Online:
2021-04-05
Published:
2021-04-05
Contact:
NING Jinghong
通讯作者:
宁静红
作者简介:
宁静红(1964—),女,博士,教授,基金资助:
CLC Number:
NING Jinghong, SUN Zhaoyang, BAO Chunxiu, ZHAO Yanfeng. Theoretical analysis on the cooling performance of high heat flux chip with dry ice[J]. CIESC Journal, 2021, 72(4): 2047-2056.
宁静红, 孙朝阳, 鲍春秀, 赵延峰. 高热通量芯片干冰冷却降温性能的理论分析[J]. 化工学报, 2021, 72(4): 2047-2056.
Add to citation manager EndNote|Ris|BibTeX
属性 | 干冰 | 气态二氧化碳 | 铜 | 硅 | 导热硅脂 |
---|---|---|---|---|---|
恒压热容 | 770 J/(kg·K) | cp(T) | 385 J/(kg·K) | 703 J/(kg·K) | 1200 J/(kg·K) |
密度 | 110 kg/m3 | ρ(p,T) | 8960 kg/m3 | 2203 kg/m3 | 2600 kg/m3 |
热导率 | 5 W/(m·K) | k(T) | 400 W/(m·K) | 1.38 W/(m·K) | 12 W/(m·K) |
动力黏度 | 5×10-6 Pa·s | η(T) | — | — | — |
比热率 | 1.3745 | 1.3 | — | — | — |
Table 1 Parameters and properties of the material selected by the model
属性 | 干冰 | 气态二氧化碳 | 铜 | 硅 | 导热硅脂 |
---|---|---|---|---|---|
恒压热容 | 770 J/(kg·K) | cp(T) | 385 J/(kg·K) | 703 J/(kg·K) | 1200 J/(kg·K) |
密度 | 110 kg/m3 | ρ(p,T) | 8960 kg/m3 | 2203 kg/m3 | 2600 kg/m3 |
热导率 | 5 W/(m·K) | k(T) | 400 W/(m·K) | 1.38 W/(m·K) | 12 W/(m·K) |
动力黏度 | 5×10-6 Pa·s | η(T) | — | — | — |
比热率 | 1.3745 | 1.3 | — | — | — |
参数名称 | 值 | 描述 |
---|---|---|
Tpc | -78.5℃ | 相变起始温度 |
Tdeat | 10℃ | 相变温度间隔 |
L12 | 573.6 kJ/kg | 相变潜热 |
Tus | -78.5℃ | 干冰进入初始温度 |
T0 | 20℃ | 模型初始温度 |
Table 2 Related parameters of model phase change
参数名称 | 值 | 描述 |
---|---|---|
Tpc | -78.5℃ | 相变起始温度 |
Tdeat | 10℃ | 相变温度间隔 |
L12 | 573.6 kJ/kg | 相变潜热 |
Tus | -78.5℃ | 干冰进入初始温度 |
T0 | 20℃ | 模型初始温度 |
针柱直径/mm | 针柱数量 | 间隔距离/ (mm×mm) | 测点温度/℃ |
---|---|---|---|
2 | 10×10 | 5.0×5.0 | 27.8517 |
2 | 11×11 | 4.5×4.5 | 26.4396 |
2 | 12×12 | 4.0×4.0 | 27.4226 |
2 | 13×13 | 3.8×3.8 | 31.2222 |
2 2 | 14×14 15×15 | 3.5×3.5 3.25×3.25 | 30.8857 30.3023 |
Table 3 The temperature at the center of the bottom surface of the chip under different pin numbers and pin spacing distances
针柱直径/mm | 针柱数量 | 间隔距离/ (mm×mm) | 测点温度/℃ |
---|---|---|---|
2 | 10×10 | 5.0×5.0 | 27.8517 |
2 | 11×11 | 4.5×4.5 | 26.4396 |
2 | 12×12 | 4.0×4.0 | 27.4226 |
2 | 13×13 | 3.8×3.8 | 31.2222 |
2 2 | 14×14 15×15 | 3.5×3.5 3.25×3.25 | 30.8857 30.3023 |
1 | 黄贤浪. 一种高热流密度电子设备结构设计[J]. 机械工程师, 2019, (6): 120-123. |
Huang X L. Structural design of a high heat flux electronic equipment[J]. Mechanical Engineer, 2019, (6): 120-123. | |
2 | 苟哲铭, 魏震, 颜少航, 等. 微型制冷系统研究进展[J]. 制冷学报, 2020, 41(1): 1-9. |
Gou Z M, Wei Z, Yan S H, et al. Review of miniature refrigeration system[J]. Journal of Refrigeration, 2020, 41(1): 1-9. | |
3 | 秦晓琪, 韩楚文. CPU散热原理及散热方式浅析[J]. 电脑知识与技术, 2017, 13(10): 210-211. |
Qin X Q, Han C W. Analysis of CPU cooling principle and cooling method [J]. Computer Knowledge and Technology, 2017, 13(10): 210-211. | |
4 | 王文豪, 潘政宏, 蒋润花, 等. CPU散热器的优化设计及数值模拟[J]. 电子测试, 2017(15): 39, 47. |
Wang W H, Pan Z H, Jiang R H, et al. Optimize design and numerical simulation of CPU heat sink[J]. Electronic Test, 2017, (15): 39-47. | |
5 | 宋从文, 艾书义. 基于ANSYS的CPU散热器的温度场分析[J]. 农业装备与车辆工程, 2013, 51(9): 74-76. |
Song C W, Ai S Y. Analysis on temperature field of the CPU radiator based on ANSYS[J]. Agricultural Equipment & Vehicle Engineering, 2013, 51(9): 74-76. | |
6 | 康明魁, 王晓明, 李海涛, 等. 某主板的铝基均热板设计、仿真与实验研究[J]. 制冷学报, 2020, 41(2): 107-114. |
Kang M K, Wang X M, Li H T, et al. Design, simulation, and experimental study of aluminous vapor chamber based on a motherboard[J]. Journal of Refrigeration, 2020, 41(2): 107-114. | |
7 | 贾英杰, 肖飞, 罗毅飞, 等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. |
Jia Y J, Xiao F, Luo Y F, et al. Multi-rate electro-thermal simulation method for high power IGBT based on field-circuit coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1952-1961. | |
8 | 李慧君, 郭保仓, 杜保周, 等. 微柱群通道内饱和沸腾换热特性实验研究[J]. 制冷学报, 2018, 39(3): 44-50. |
Li H J, Guo B C, Du B Z, et al. Experimental study of saturated flow boiling heat transfer in an array of micro-pin-fins[J]. Journal of Refrigeration, 2018, 39(3): 44-50. | |
9 | 邹子文, 徐子耀, 崔云. 不同结构的CPU水冷散热器的性能分析[J]. 能源工程, 2020, (2): 85-88. |
Zou Z W, Xu Z Y, Cui Y. Comparative analysis of the performance of water coolers for CPU with different structures[J]. Energy Engineering, 2020, (2): 85-88. | |
10 | 白敏丽, 喜娜, 徐哲, 等. CPU集成热管散热器试验研究及CFD辅助设计[J]. 大连理工大学学报, 2008, 48(2): 178-184. |
Bai M L, Xi N, Xu Z, et al. Design of CPU integrated heat sink using heat pipes assisted with CFD and experimental research[J]. Journal of Dalian University of Technology, 2008, 48(2): 178-184. | |
11 | Poachaiyapoom A, Leardkun R, Mounkong J, et al. Miniature vapor compression refrigeration system for electronics cooling[J]. Case Studies in Thermal Engineering, 2019, 13: 100365. |
12 | Hu H M, Ge T S, Dai Y J, et al. Experimental study on water-cooled thermoelectric cooler for CPU under severe environment[J]. International Journal of Refrigeration, 2016, 62: 30-38. |
13 | 牛永红, 刘宗攀, 庞赟佶. CPU芯片水冷散热器的数值模拟与分析[J]. 化工进展, 2010, 29(S1): 653-655. |
Niu Y H, Liu Z P, Pang Y J. Numerical simulation and analysis of CPU chip water-cooled radiator [J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 653-655. | |
14 | 王彬, 诸凯, 王雅博, 等. 翅柱式水冷CPU芯片散热器冷却与流动性能[J]. 化工进展, 2017, 36(6): 2031-2037. |
Wang B, Zhu K, Wang Y B, et al. Experimental study on cooling and flow performance of water-cooling radiator with different pin-fins structures for CPU cooling[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2031-2037. | |
15 | 崔卓, 诸凯, 王雅博, 等. 高热流密度器件水冷散热器结构性能的实验研究[J]. 化工进展, 2016, 35(5): 1338-1343. |
Cui Z, Zhu K, Wang Y B, et al. Experimental study on water-cooled radiator structure performance of high heat flux device[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1338-1343. | |
16 | 魏少华, 高峰, 王飞. 基于固气耦合的CPU散热器流场分析和数值模拟[J]. 电子设计工程, 2013, 21(18): 45-47. |
Wei S H, Gao F, Wang F. Field analysis and numerical simulation of CPU radiator flow based on the solid and gas coupling[J]. Electronic Design Engineering, 2013, 21(18): 45-47. | |
17 | 胡广涛, 金明明. 一种射流式水冷CPU散热器传热特性的数值模拟[J]. 现代工业经济和信息化, 2015, 5(16): 69-72. |
Hu G T, Jin M M. Numerical simulation of heat transfer characteristics of fluidic cooling CPU heat sink[J]. Modern Industrial Economy and Informationization, 2015, 5(16): 69-72. | |
18 | 李艳红. CPU热柱散热器的实验研究及流场和温度场的数值模拟[D]. 湘潭: 湘潭大学, 2010. |
Li Y H. Experimental testing of CPU thermal column radiator and numerical simulation of its flow field and temperature field[D]. Xiangtan: Xiangtan University, 2010. | |
19 | Li J X, Li Y Z, Li E H, et al. Experimental investigation of spray-sublimation cooling system with CO2 dry-ice particles[J]. Applied Thermal Engineering, 2020, 174: 115285. |
20 | 马力, 郭宪民, 孔进笑. 改进的CO2两相流引射制冷系统性能实验研究[J]. 低温与超导, 2020, 48(5): 47-52. |
Ma L, Guo X M, Kong J X. Experimental study on performance of improved CO2 two-phase flow ejector refrigeration system[J]. Cryogenics & Superconductivity, 2020, 48(5): 47-52. | |
21 | Siricharoenpanich A, Wiriyasart S, Srichat A, et al. Thermal management system of CPU cooling with a novel short heat pipe cooling system[J]. Case Studies in Thermal Engineering, 2019, 15: 100545. |
22 | Xie J L, Tan Y B, Duan F, et al. Study of heat transfer enhancement for structured surfaces in spray cooling[J]. Applied Thermal Engineering, 2013, 59(1/2): 464-472. |
23 | Cheng W L, Han F Y, Liu Q N, et al. Spray characteristics and spray cooling heat transfer in the non-boiling regime[J]. Energy, 2011, 36(5): 3399-3405. |
24 | Bostanci H, Rini D P, Kizito J P, et al. High heat flux spray cooling with ammonia: investigation of enhanced surfaces for CHF[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3849-3856. |
25 | Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop[J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746. |
26 | 朱丽瑶, 曹建光, 董丽宁, 等. 航天器高热流射流冷却技术研究综述[J]. 上海航天, 2016, 33(2): 106-112. |
Zhu L Y, Cao J G, Dong L N, et al. Review on jet impingement technology for spacecraft high-heat-flux removal[J]. Aerospace Shanghai, 2016, 33(2): 106-112. | |
27 | 邱晓光. RADEON 9700 PRO显卡极限液氮超频[J]. 大众硬件, 2003, (1): 123-124. |
Qiu X G. RADEON 9700 PRO graphics card extreme liquid nitrogen overclocking [J]. POP Hard, 2003, (1): 123-124. | |
28 | 常琳, 郑子川, 姜云健. 基于专利分析的电力设备干冰清洗技术[J]. 科技与创新, 2017, (10): 25-26. |
Chang L, Zheng Z C, Jiang Y J. Dry ice cleaning technology for power equipment based on patent analysis [J]. Science and Technology & Innovation, 2017, (10): 25-26. | |
29 | 吕平. 干冰微粒喷射技术综述[J]. 真空科学与技术学报, 2016, 36(8): 955-961. |
Lyu P. Latest progress in cleaning / polishing of delicate surfaces by CO2 snow jet spraying[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(8): 955-961. | |
30 | Sherman R. Carbon dioxide snow cleaning[J]. Particulate Science and Technology, 2007, 25(1): 37-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||