CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 783-798.DOI: 10.11949/0438-1157.20201094
• Reviews and monographs • Previous Articles Next Articles
LIU Langyu(),ZHU Chunying,MA Youguang,FU Taotao()
Received:
2020-08-03
Revised:
2020-09-28
Online:
2021-02-05
Published:
2021-02-05
Contact:
FU Taotao
通讯作者:
付涛涛
作者简介:
刘浪宇(1998—),男,硕士研究生,基金资助:
CLC Number:
LIU Langyu, ZHU Chunying, MA Youguang, FU Taotao. Progress on surfactant and interfacial transport phenomena in microchannels[J]. CIESC Journal, 2021, 72(2): 783-798.
刘浪宇, 朱春英, 马友光, 付涛涛. 微通道内表面活性剂与界面传递现象研究进展[J]. 化工学报, 2021, 72(2): 783-798.
Add to citation manager EndNote|Ris|BibTeX
1 | van Loo S, Stoukatch S, Kraft M, et al. Droplet formation by squeezing in a microfluidic cross-junction[J]. Microfluidics and Nanofluidics, 2016, 20(10): 146. |
2 | Kim L, Toh Y C, Voldman J, et al. A practical guide to microfluidic perfusion culture of adherent mammalian cells[J]. Lab on a Chip, 2007, 7(6): 681-694. |
3 | Brouzes E, Medkova M, Savenelli N, et al. Droplet microfluidic technology for single-cell high-throughput screening[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14195-14200. |
4 | Saxena N, Kumar A, Mandal A. Adsorption analysis of natural anionic surfactant for enhanced oil recovery: the role of mineralogy, salinity, alkalinity and nanoparticles[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1264-1283. |
5 | Mao X H, Jiang R, Xiao W, et al. Use of surfactants for the remediation of contaminated soils: a review[J]. Journal of Hazardous Materials, 2015, 285: 419-435. |
6 | Yang Y, Leser M E, Sher A A, et al. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale (R))[J]. Food Hydrocolloids, 2013, 30(2): 589-596. |
7 | Anna S L. Droplets and bubbles in microfluidic devices[J]. Annual Review of Fluid Mechanics, 2016, 48: 285-309. |
8 | Baret J C, Kleinschmidt F, El Harrak A, et al. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis[J]. Langmuir, 2009, 25(11): 6088-6093. |
9 | Ambravaneswaran B, Wilkes E D, Basaran O A. Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops[J]. Physics of Fluids, 2002, 14(8): 2606-2621. |
10 | Pang Y, Kim H, Liu Z M, et al. A soft microchannel decreases polydispersity of droplet generation[J]. Lab on a Chip, 2014, 14: 4029-4034. |
11 | Luo Z Y, Shang X L, Bai B F. Marangoni effect on the motion of a droplet covered with insoluble surfactant in a square microchannel[J]. Physics of Fluids, 2018, 30(7): 077101. |
12 | Glawdel T, Ren C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime(III): Dynamic surfactant effects[J]. Physical Review E, 2012, 86(2): 026308. |
13 | Tostado C P, Xu J H, Du A W, et al. Experimental study on dynamic interfacial tension with mixture of SDS-PEG as surfactants in a coflowing microfluidic device[J]. Langmuir, 2012, 28(6): 3120-3128. |
14 | Steegmans M L J, Warmerdam A, Schroёn KG P H, et al. Dynamic interfacial tension measurements with microfluidic Y-junctions[J]. Langmuir, 2009, 25(17): 9751-9758. |
15 | Wang X Y, Riaud A, Wang K, et al. Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel[J]. Microfluidics and Nanofluidics, 2015, 18(3): 503-512. |
16 | Xu J H, Li S W, Lan W J, et al. Microfluidic approach for rapid interfacial tension measurement[J]. Langmuir, 2008, 24(19): 11287-11292. |
17 | Nie Z H, Xu S Q, Seo M, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. Journal of the American Chemical Society, 2005, 127(22): 8058-8063. |
18 | Cascon-Pereira R, Martin J D M, Icart I B. An exploration of the meanings of innovation held by students, teachers and SMEs in Spain[J]. Journal of Vocational Education and Training, 2019, 71(4): 623-644. |
19 | Riaud A, Tostado C P, Wang K, et al. A facile pressure drop measurement system and its applications to gas-liquid microflows[J]. Microfluidics and Nanofluidics, 2013, 15(5): 715-724. |
20 | Riaud A, Zhang H, Wang X Y, et al. Numerical study of surfactant dynamics during emulsification in a T-junction microchannel[J]. Langmuir, 2018, 34(17): 4980-4990. |
21 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
22 | Wang K, Lu Y C, Xu J H, et al. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process[J]. Langmuir, 2009, 25(4): 2153-2158. |
23 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
24 | Xu J H, Li S W, Tan J, et al. Preparation of highly monodisperse droplet in a T-junction microfluidic device[J]. AIChE Journal, 2006, 52(9): 3005-3010. |
25 | Cabral J T, Hudson S D. Microfluidic approach for rapid multicomponent interfacial tensiometry[J]. Lab on a Chip, 2006, 6(3): 427-436. |
26 | Glawdel T, Elbuken C, Ren C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime(I): Experimental observations[J]. Physical Review E, 2012, 85(1/2): 016322. |
27 | Horozov T, Arnaudov L. A novel fast technique for measuring dynamic surface and interfacial tension of surfactant solutions at constant interfacial area[J]. Journal of Colloid and Interface Science, 1999, 219(1): 99-109. |
28 | Buzzacchi M, Schmiedel P, von Rybinski W. Dynamic surface tension of surfactant systems and its relation to foam formation and liquid film drainage on solid surfaces[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2006, 273(1/2/3): 47-54. |
29 | Miller R, Aksenenko E V, Fainerman V B. Dynamic interfacial tension of surfactant solutions[J]. Advances in Colloid and Interface Science, 2017, 247: 115-129. |
30 | Ponce-Torres A, Montanero J M, Herrada M A, et al. Influence of the surface viscosity on the breakup of a surfactant-laden drop[J]. Physical Review Letters, 2017, 118(2): 024501. |
31 | Baret J C. Surfactants in droplet-based microfluidics[J]. Lab on a Chip, 2012, 12(3): 422-433. |
32 | Sternling C V, Scriven L E. Interfacial turbulence : hydrodynamic instability and the Marangoni effect[J]. AIChE Journal, 1959, 5(4): 514-523. |
33 | Takagi S, Matsumoto Y. Surfactant effects on bubble motion and bubbly flows[J]. Annual Review of Fluid Mechanics, 2011, 43(1): 615-636. |
34 | Still T, Yunker P J, Yodh A G. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops[J]. Langmuir, 2012, 28(11): 4984-4988. |
35 | Almatroushi E, Borhan A. Surfactant effect on the buoyancy-driven motion of bubbles and drops in a tube[J]. Transport Phenomena in Microgravity, 2004, 1027: 330-341. |
36 | Jafari S M, Assadpoor E, He Y H, et al. Re-coalescence of emulsion droplets during high-energy emulsification[J]. Food Hydrocolloids, 2008, 22(7): 1191-1202. |
37 | Xu J J, Shi W D, Lai M C. A level-set method for two-phase flows with soluble surfactant[J]. Journal of Computational Physics, 2018, 353: 336-355. |
38 | Bretherton F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 2006, 10(2): 166-188. |
39 | Park C W. Influence of soluble surfactants on the motion of a finite bubble in a capillary tube[J]. Physics of Fluids A Fluid Dynamics, 1992, 4(11): 2335-2347. |
40 | Luo Z Y, Shang X L, Bai B F. Effect of soluble surfactant on the motion of a confined droplet in a square microchannel[J]. Physics of Fluids, 2019, 31(11): 117104. |
41 | Kovalchuk N M, Nowak E, Simmons M J H. Effect of soluble surfactants on the kinetics of thinning of liquid bridges during drops formation and on size of satellite droplets[J]. Langmuir, 2016, 32(20): 5069-5077. |
42 | Saint Vincent M R D, Petit J, Aytouna M, et al. Dynamic interfacial tension effects in the rupture of liquid necks[J]. Journal of Fluid Mechanics, 2012, 692: 499-510. |
43 | Liascukiene I, Amselem G, Gunes D Z, et al. Capture of colloidal particles by a moving microfluidic bubble[J]. Soft Matter, 2018, 14(6): 992-1000. |
44 | Brosseau Q, Vrignon J, Baret J-C. Microfluidic dynamic interfacial tensiometry (μDIT)[J]. Soft Matter, 2014, 10(17): 3066-3076. |
45 | Fuerstman M J, Lai A, Thurlow M E, et al. The pressure drop along rectangular microchannels containing bubbles[J]. Lab on a Chip, 2007, 7(11): 1479-1489. |
46 | Taylor G I. The formation of emulsions in definable fields of flow[J]. Proceedings of the Royal Society of London, 1934, 146(858): 501-523. |
47 | Vlahovska P M, Blawzdziewicz J, Loewenberg M. Small-deformation theory for a surfactant-covered drop in linear flows[J]. Journal of Fluid Mechanics, 2009, 624: 293-337. |
48 | Jakiela S, Makulska S, Korczyk P M, et al. Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities[J]. Lab on a Chip, 2011, 11(21): 3603-3608. |
49 | Drumright-Clarke M A, Renardy Y. The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia[J]. Physics of Fluids, 2004, 16(1): 14-21. |
50 | Mandal S, Das S, Chakraborty S. Effect of Marangoni stress on the bulk rheology of a dilute emulsion of surfactant-laden deformable droplets in linear flows[J]. Physical Review Fluids, 2017, 2(11): 113604. |
51 | Zhao H, Zhang W B, Xu J L, et al. Influence of surfactant on the drop bag breakup in a continuous air jet stream[J]. Physics of Fluids, 2016, 28(5): 054102. |
52 | Aggarwal N, Sarkar K. Effects of matrix viscoelasticity on viscous and viscoelastic drop deformation in a shear flow[J]. Journal of Fluid Mechanics, 2008, 601: 63-84. |
53 | Panigrahi D P, Das S, Chakraborty S. Deformation of a surfactant-laden viscoelastic droplet in a uniaxial extensional flow[J]. Physics of Fluids, 2018, 30(12): 122108. |
54 | Tan J, Li S W, Wang K, et al. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J]. Chemical Engineering Journal, 2009, 146(3): 428-433. |
55 | Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
56 | 刘赵淼, 杨洋, 杜宇, 等. 微流控液滴技术及其应用的研究进展[J]. 分析化学, 2017, 45(2): 282-296. |
Liu Z M, Yang Y, Du Y, et al. Advances in droplet-based microfluidics technology and its application [J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 282-296. | |
57 | 陈晓东, 胡国庆. 微流控器件中的多相流动[J]. 力学进展, 2015, 45(1): 55-110. |
Chen X D, Hu G Q. Multiphase flow in microfluidic devices [J]. Advances in Mechanics, 2015, 45(1): 55-110. | |
58 | Abdulmouti H. Bubbly two-phase flow(Ⅰ): Characteristics, structures, behaviors and flow patterns[J]. American Journal of Fluid Dynamics, 2014, 4(4): 194-240. |
59 | Bai L, Fu Y H, Zhao S F, et al. Droplet formation in a microfluidic T-junction involving highly viscous fluid systems[J]. Chemical Engineering Science, 2016, 145: 141-148. |
60 | Darekar M, Singh K K, Mukhopadhyay S, et al. Liquid-liquid two-phase flow patterns in Y-junction microchannels[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12215-12226. |
61 | Lioumbas J S, Mouza A A, Paras S V. Effect of surfactant additives on co-current gas-liquid downflow[J]. Chemical Engineering Science, 2006, 61(14): 4605-4616. |
62 | Duangprasert T, Sirivat A, Siemanond K, et al. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant[J]. Experimental Thermal and Fluid Science, 2008, 32(3): 808-817. |
63 | Du J P, Ibaseta N, Guichardon P. Generation of an O/W emulsion in a flow-focusing microchip: importance of wetting conditions and of dynamic interfacial tension[J]. Chemical Engineering Research and Design, 2020, 159: 615-627. |
64 | Shao N, Gavriilidis A, Angeli P. Flow regimes for adiabatic gas-liquid flow in microchannels[J]. Chemical Engineering Science, 2009, 64(11): 2749-2761. |
65 | Kovalchuk N M, Roumpea E, Nowak E, et al. Effect of surfactant on emulsification in microchannels[J]. Chemical Engineering Science, 2018, 176: 139-152. |
66 | Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Physical Review Letters, 2003, 90(14): 144505. |
67 | Zhang C, Weldetsadik N T, Hayat Z, et al. The effect of liquid viscosity on bubble formation dynamics in a flow-focusing device[J]. International Journal of Multiphase Flow, 2019, 117: 206-211. |
68 | van Hoeve W, Dollet B, Versluis M, et al. Microbubble formation and pinch-off scaling exponent in flow-focusing devices[J]. Physics of Fluids, 2011, 23(9): 092001. |
69 | Li X C, Huang Y Y, Chen X Q, et al. Breakup dynamics of gas-liquid interface during Taylor bubble formation in a microchannel flow-focusing device[J]. Experimental Thermal and Fluid Science, 2020, 113: 110043. |
70 | Thoroddsen S T, Etoh T G, Takehara K. Experiments on bubble pinch-off[J]. Physics of Fluids, 2007, 19(4): 042101. |
71 | Dollet B, van Hoeve W, Raven J P, et al. Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J]. Physical Review Letters, 2008, 100(3): 034504. |
72 | Roumpea E, Kovalchuk N M, Chinaud M, et al. Experimental studies on droplet formation in a flow-focusing microchannel in the presence of surfactants[J]. Chemical Engineering Science, 2019, 195: 507-518. |
73 | Roche M, Aytouna M, Bonn D, et al. Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants[J]. Physical Review Letters, 2009, 103(26): 264501. |
74 | Yu W, Liu X D, Zhao Y J, et al. Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles[J]. Chemical Engineering Science, 2019, 203: 259-284. |
75 | Ata S. Coalescence of bubbles covered by particles[J]. Langmuir, 2008, 24(12): 6085-6091. |
76 | Bremond N, Thiam A R, Bibette J. Decompressing emulsion droplets favors coalescence[J]. Physical Review Letters, 2008, 100(2): 024501. |
77 | Chan D Y C, Klaseboer E, Manica R. Film drainage and coalescence between deformable drops and bubbles[J]. Soft Matter, 2011, 7(6): 2235-2264. |
78 | Levache B, Bartolo D. Revisiting the Saffman-Taylor experiment: imbibition patterns and liquid-entrainment transitions[J]. Physical Review Letters, 2014, 113(4): 044501. |
79 | Eggers J. Nonlinear dynamics and breakup of free-surface flows[J]. Reviews of Modern Physics, 1997, 69(3): 865-930. |
80 | Li S Q, Liu M C, Hanaor D, et al. Dynamics of viscous entrapped saturated zones in partially wetted porous media[J]. Transport in Porous Media, 2018, 125(2): 193-210. |
81 | Cubaud T, Mason T G. Capillary threads and viscous droplets in square microchannels[J]. Physics of Fluids, 2008, 20(5): 053302. |
82 | Hashimoto M, Garstecki P, Stone H A, et al. Interfacial instabilities in a microfluidic Hele-Shaw cell[J]. Soft Matter, 2008, 4(7): 1403-1413. |
83 | Taylor G I. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 280(1382): 383-397. |
84 | Fernandez J M, Homsy G M. Chemical reaction-driven tip-streaming phenomena in a pendant drop[J]. Physics of Fluids, 2004, 16(7): 2548-2555. |
85 | Krechetnikov R, Homsy G M. On physical mechanisms in chemical reaction-driven tip-streaming[J]. Physics of Fluids, 2004, 16(7): 2556-2566. |
86 | Suryo R, Basaran O A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid[J]. Physics of Fluids, 2006, 18(8): 082102. |
87 | Castro-Hernández E, Campo-Cortés F, Gordillo J M. Slender-body theory for the generation of micrometre-sized emulsions through tip streaming[J]. Journal of Fluid Mechanics, 2012, 698: 423-445. |
88 | Moyle T M, Walker L M, Anna S L. Predicting conditions for microscale surfactant mediated tipstreaming[J]. Physics of Fluids, 2012, 24(8): 082110. |
89 | Moyle T M, Walker L M, Anna S L. Controlling thread formation during tipstreaming through an active feedback control loop[J]. Lab on a Chip, 2013, 13(23): 4534-4541. |
90 | Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12): 121512. |
91 | Lee W, Walker L M, Anna S L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing[J]. Physics of Fluids, 2009, 21(3): 032103. |
92 | Ward T, Faivre M, Stone H A. Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction[J]. Langmuir, 2010, 26(12): 9233-9239. |
93 | Vega E J, Acero A J, Montanero J M, et al. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers[J]. Physical Review E, 2014, 89(6): 063012. |
94 | Castro-Hernandez E, van Hoeve W, Lohse D, et al. Microbubble generation in a co-flow device operated in a new regime[J]. Lab on a Chip, 2011, 11(12): 2023-2029. |
95 | Fu T T, Ma Y G, Funfschilling D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10): 2392-2400. |
96 | Riechers B, Maes F, Akoury E, et al. Surfactant adsorption kinetics in microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): 11465-11470. |
97 | Kawale D, van Nimwegen A T, Portela L M, et al. The relation between the dynamic surface tension and the foaming behaviour in a sparger setup[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2015, 481: 328-336. |
98 | Kanokkarn P, Shiina T, Santikunaporn M, et al. Equilibrium and dynamic surface tension in relation to diffusivity and foaming properties: effects of surfactant type and structure[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2017, 524: 135-142. |
99 | Ampatzidis C D, Varka E M A, Karapantsios T D. Interfacial activity of amino acid-based glycerol ether surfactants and their performance in stabilizing O/W cosmetic emulsions[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2014, 460: 176-183. |
100 | Ward A, Tordai L. Time-dependence of boundary tensions of solutions (Ⅰ): The role of diffusion in time-effects[J]. J.Chem. Phys., 1946, 14: 453- 461. |
101 | Baret J F. Theoretical model for an interface allowing a kinetic study of adsorption[J]. Journal of Colloid and Interface Science, 1969, 30(1): 1-12. |
102 | Yang M W, Wei H H, Lin S Y. A theoretical study on surfactant adsorption kinetics: effect of bubble shape on dynamic surface tension[J]. Langmuir, 2007, 23(25): 12606-12616. |
103 | Colegate D M, Bain C D. Adsorption kinetics in micellar solutions of nonionic surfactants[J]. Physical Review Letters, 2005, 95(19): 198302. |
104 | Zhmud B V, Tiberg F, Kizling J. Dynamic surface tension in concentrated solutions of CnEm surfactants: a comparison between the theory and experiment[J]. Langmuir, 2000, 16(6): 2557-2565. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[3] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[4] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[5] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[6] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[7] | Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185. |
[8] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[9] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
[10] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[11] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[12] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[13] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[14] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[15] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||