CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2506-2513.DOI: 10.11949/0438-1157.20201269
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
SHEN Chao1(),LIU Yujuan1,WANG Zhuxuan1,ZHANG Dongwei2(),YANG Jianzhong1,WEI Xinli2
Received:
2020-09-07
Revised:
2020-12-08
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZHANG Dongwei
沈超1(),刘玉娟1,王竹萱1,张东伟2(),杨建中1,魏新利2
通讯作者:
张东伟
作者简介:
沈超(1980—),男,博士研究生,副教授,基金资助:
CLC Number:
SHEN Chao, LIU Yujuan, WANG Zhuxuan, ZHANG Dongwei, YANG Jianzhong, WEI Xinli. Visualization experiment of two-phase flow in parallel flow heat pipe[J]. CIESC Journal, 2021, 72(5): 2506-2513.
沈超, 刘玉娟, 王竹萱, 张东伟, 杨建中, 魏新利. 平行流热管管内两相流动可视化实验研究[J]. 化工学报, 2021, 72(5): 2506-2513.
Add to citation manager EndNote|Ris|BibTeX
实验 样品 | 平行流热管参数 | |||||
---|---|---|---|---|---|---|
管长/mm | 管径/mm | 集液管和均压管管径/mm | 工质 | 管间距/mm | 充液率 | |
1 | 300 | 4 | 8 | 丙酮 | 4 | 0.258 |
2 | 300 | 2 | 6 | 丙酮 | 6 | 0.26 |
3 | 300 | 4 | 8 | 甲醇 | 4 | 0.258 |
Table 1 Sample parameters of parallel flow heat pipe
实验 样品 | 平行流热管参数 | |||||
---|---|---|---|---|---|---|
管长/mm | 管径/mm | 集液管和均压管管径/mm | 工质 | 管间距/mm | 充液率 | |
1 | 300 | 4 | 8 | 丙酮 | 4 | 0.258 |
2 | 300 | 2 | 6 | 丙酮 | 6 | 0.26 |
3 | 300 | 4 | 8 | 甲醇 | 4 | 0.258 |
工质 | 沸点Ts/℃ | 密度ρl(20℃)/ (kg/m3) | 比热容Cpl(20℃)/ (kJ/(kg·℃)) | 热导率λl(20℃)/ (W/(m·℃)) | 汽化潜热Hfg(20℃)/ (kJ/kg) | (dP/dT)sat(60℃)/ (kPa/℃) | 动力黏度υl(20℃)/ (mPa·s) |
---|---|---|---|---|---|---|---|
丙酮 | 56.5 | 790.4 | 2.13 | 0.157 | 539 | 3.83 | 0.32 |
甲醇 | 64.7 | 790.9 | 2.48 | 0.212 | 1101 | 3.43 | 0.58 |
Table 2 Thermophysical parameters of different working fluids at standard atmospheric pressure
工质 | 沸点Ts/℃ | 密度ρl(20℃)/ (kg/m3) | 比热容Cpl(20℃)/ (kJ/(kg·℃)) | 热导率λl(20℃)/ (W/(m·℃)) | 汽化潜热Hfg(20℃)/ (kJ/kg) | (dP/dT)sat(60℃)/ (kPa/℃) | 动力黏度υl(20℃)/ (mPa·s) |
---|---|---|---|---|---|---|---|
丙酮 | 56.5 | 790.4 | 2.13 | 0.157 | 539 | 3.83 | 0.32 |
甲醇 | 64.7 | 790.9 | 2.48 | 0.212 | 1101 | 3.43 | 0.58 |
1 | Abreu S L, Colle S. An experimental study of two-phase closed thermosyphons for compact solar domestic hot-water systems[J]. Solar Energy, 2004, 76(1/2/3): 141-145. |
2 | Ramos-Alvarado B, Li P W, Liu H, et al. CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells[J]. Applied Thermal Engineering, 2011, 31(14/15): 2494-2507. |
3 | Lamaison N, Ong C L, Marcinichen J B, et al. Two-phase mini-thermosyphon electronics cooling: dynamic modeling, experimental validation and application to 2U servers[J]. Applied Thermal Engineering, 2017, 110: 481-494. |
4 | Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronic equipment[J]. Energy Conversion and Management, 2008, 49(11): 3398-3404. |
5 | Krishna J, Kishore P S, Solomon A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92. |
6 | Weng Y C, Cho H P, Chang C C, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833. |
7 | Sundaram A S, Bhaskaran A. Thermal modeling of thermosyphon integrated heat sink for CPU cooling[J]. Journal of Electronics Cooling and Thermal Control, 2011, 1(2): 15-21. |
8 | Zhang M Y, Lai Y M, Zhang J M, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65(2): 203-210. |
9 | 杨永平, 魏庆朝, 周顺华, 等. 热管技术及其在多年冻土工程中的应用研究[J]. 岩土工程学报, 2005, 27(6): 698-706. |
Yang Y P, Wei Q C, Zhou S H, et al. Thermosyphon technology and its application in permafrost[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 698-706. | |
10 | Tundee S, Srihajong N, Charmongkolpradit S. Electric power generation from solar pond using combination of thermosyphon and thermoelectric modules[J]. Energy Procedia, 2014, 48: 453-463. |
11 | Yau Y H. Experimental thermal performance study of an inclined heat pipe heat exchanger operating in high humid tropical HVAC systems[J]. International Journal of Refrigeration, 2007, 30(7): 1143-1152. |
12 | Yau Y H. Application of a heat pipe heat exchanger to dehumidification enhancement in a HVAC system for tropical climates—a baseline performance characteristics study[J]. International Journal of Thermal Sciences, 2007, 46(2): 164-171. |
13 | Yau Y H. The use of a double heat pipe heat exchanger system for reducing energy consumption of treating ventilation air in an operating theatre—a full year energy consumption model simulation[J]. Energy and Buildings, 2008, 40(5): 917-925. |
14 | Gedik E, Yılmaz M, Kurt H. Experimental investigation on the thermal performance of heat recovery system with gravity assisted heat pipe charged with R134a and R410A[J]. Applied Thermal Engineering, 2016, 99: 334-342. |
15 | 张海松, 谢国威, 战洪仁, 等. 两相闭式热虹吸管内部过程可视化及其强化传热研究进展[J]. 化工进展, 2017, 36(3): 791-801. |
Zhang H S, Xie G W, Zhan H R, et al. Progress of research on visualization of internal procedure of two-phase closed thermosyphon and its heat transfer enhancement[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 791-801. | |
16 | Yu F W, Yu C, Cao J G, et al. Experimental analysis of the evaporation regimes of an axially grooved heat pipe at small tilt angles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 334-341. |
17 | 黄廉民, 孙曾闰, 张有衡. 垂直封闭两相热虹吸管内部流动的可视化实验研究[J]. 南京工业大学学报(自然科学版), 1986, 8(4): 92-103. |
Huang L M, Sun Z R, Zhang Y H. Visualization experimental study on the flow in a vertical closed two-phase thermosyphon [J]. Journal of Nanjing University of Technology (Natural Science Edition), 1986, 8(4): 92-103. | |
18 | 陈岗, 辛明道, 陈远国. 两相闭式热虹吸管内的流动和传热[J]. 工程热物理学报, 1987, 8(2): 149-152. |
Chen G, Xin M D, Chen Y G. Flow and heat transfer in two-phase closed thermosyphons[J]. Journal of Engineering Thermophysics, 1987, 8(2): 149-152. | |
19 | Emami M R S, Noie S H, Khoshnoodi M. Effect of aspect ratio and filling ratio on thermal performance of an inclined two-phase closed thermosyphon[J]. Iranian Journal of Science and Technology Transaction B-Engineering, 2008, 32(B1): 39-51. |
20 | 韩振兴, 王冬骁, 王飞, 等. 重力热管冷凝段运行特征的可视化实验研究[J]. 化工学报, 2014, 65(8): 2934-2939. |
Han Z X, Wang D X, Wang F, et al. Visual experimental study on operation characteristics of condensation segment of gravity-assisted heat pipe[J]. CIESC Journal, 2014, 65(8): 2934-2939. | |
21 | 于程, 刘向东, 张孟臣, 等. 平板热管内气液两相流动与传热的可视化实验研究[J]. 工程热物理学报, 2017, 38(4): 807-810. |
Yu C, Liu X D, Zhang M C, et al. Visualization study of vapor-liquid two phase flow and heat transfer in flat plate heat pipe[J]. Journal of Engineering Thermophysics, 2017, 38(4): 807-810. | |
22 | Smith K, Robinson A J, Kempers R. Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part B: Heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1241-1254. |
23 | Smith K, Kempers R, Robinson A J. Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part A: Flow regimes[J]. International Journal of Heat and Mass Transfer, 2018, 119: 907-921. |
24 | Kim I G, Kim K M, Jeong Y S, et al. Flow visualization and heat transfer performance of annular thermosyphon heat pipe[J]. Applied Thermal Engineering, 2017, 125: 1456-1468. |
25 | 孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810. |
Sun Q, Qu J, Yuan J P. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2017, 68(5): 1803-1810. | |
26 | 刘向东, 王超, 陈永平. 基于红外热成像的脉动热管运行及传热特性分析[J]. 化工学报, 2016, 67(4): 1129-1135. |
Liu X D, Wang C, Chen Y P. Analysis of operation and heat transfer characteristics in pulsating heat pipe based on infrared thermal imaging technology[J]. CIESC Journal, 2016, 67(4): 1129-1135. | |
27 | 冼海珍, 刘晓敏, 杨勇平, 等. 振荡流热管可视化实验[J]. 工程热物理学报, 2011, 32(9): 1583-1585. |
Xian H Z, Liu X M, Yang Y P, et al. Visualization experiment for oscillating heat pipe[J]. Journal of Engineering Thermophysics, 2011, 32(9): 1583-1585. | |
28 | 冼海珍, 王川川, 杨勇平, 等. 工质为戊醇-水溶液的振荡流热管可视化实验[J]. 工程热物理学报, 2013, 34(7): 1343-1346. |
Xian H Z, Wang C C, Yang Y P, et al. Visualization experiment for pentanol-water solution oscillating heat pipe[J]. Journal of Engineering Thermophysics, 2013, 34(7): 1343-1346. | |
29 | Zou Y, Tuo H F, Hrnjak P S. Modeling refrigerant maldistribution in microchannel heat exchangers with vertical headers based on experimentally developed distribution results[J]. Applied Thermal Engineering, 2014, 64(1/2): 172-181. |
30 | 沈超, 余鹏, 张东伟, 等. 平行流热管换热器传热传质特性的数值模拟研究[J]. 工程热物理学报, 2017, 38(6): 1309-1312. |
Shen C, Yu P, Zhang D W, et al. Numerical simulation of heat and mass transfer in a parallel flow heat exchanger[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1309-1312. | |
31 | 沈超, 杨绍伦, 张东伟, 等. 平行流热管换热器传热性能实验研究[J]. 工程热物理学报, 2018, 39(6): 1339-1343. |
Shen C, Yang S L, Zhang D W, et al. Experimental research on heat transfer performance of parallel flow heat pipe exchangers[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1339-1343. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[8] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[9] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[10] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[11] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[14] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[15] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||