CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2493-2505.DOI: 10.11949/0438-1157.20201412
• Thermodynamics • Previous Articles Next Articles
ZHANG Lili1,2(),LI Yan1,2,GAO Jing1()
Received:
2020-10-09
Revised:
2021-01-14
Online:
2021-05-05
Published:
2021-05-05
Contact:
GAO Jing
通讯作者:
高静
作者简介:
张莉莉(1996—),女,硕士研究生,基金资助:
CLC Number:
ZHANG Lili, LI Yan, GAO Jing. Phase behavior and physicochemical properties of thermoreversible aqueous biphasic systems composed of ionic liquids and deep eutectic solvents[J]. CIESC Journal, 2021, 72(5): 2493-2505.
张莉莉, 李艳, 高静. 热可逆离子液体-低共熔溶剂双水相体系的相行为及理化特性研究[J]. 化工学报, 2021, 72(5): 2493-2505.
Add to citation manager EndNote|Ris|BibTeX
ILs/DESs | Wc/% | η×10-3/(mPa·s)(298.15 K) | α (298.15 K) | β (298.15 K) | π* (298.15 K) | (298.15 K) | Ti/K | Tpeak/K | Tf/K | Wlost/% | W973.15/% |
---|---|---|---|---|---|---|---|---|---|---|---|
[C4mim]BF4 | 0.52±0.01 | 0.10±0.00 | 0.69±0.02 | 0.32±0.01 | 1.05±0.03 | 0.70±0.02 | 644.45 | 691.05 | 701.75 | 370.71 | 1.12 |
[C4mim]Br | 0.27±0.02 | ND | ND | ND | ND | ND | 556.75 | 587.15 | 595.25 | 362.91 | 3.61 |
[C4mim]Cl | 0.13±0.02 | ND | ND | ND | ND | ND | 538.95 | 560.75 | 569.85 | 360.51 | 4.33 |
[C4mim]CF3COO | 1.49±0.02 | 0.08±0.00 | 0.61±0.03 | 0.71±0.03 | 0.96±0.02 | 0.64±0.01 | 454.05 | 471.45/551.45 | 519.25 | 353.05 | 7.16 |
[P4444]BF4 | 0.29±0.01 | ND | ND | ND | ND | ND | 719.45 | 741.35 | 753.45 | 364.74 | 3.19 |
[P4444]Br | 0.52±0.02 | ND | ND | ND | ND | ND | 645.55 | 675.45 | 691.05 | 369.57 | 1.88 |
[P4444]Cl | 0.02±0.01 | ND | ND | ND | ND | ND | 640.25 | 669.95 | 685.65 | 364.47 | 3.72 |
[P4444]CF3COO | 0.15±0.01 | ND | ND | ND | ND | ND | 462.15 | 476.65/499.15/518.35 | 512.05 | 350.60 | 3.91 |
[P4448]BF4 | 1.25±0.45 | 0.89±0.00 | ND | 0.68±0.01 | 0.87±0.02 | ND | 703.95 | 743.95 | 751.35 | 366.02 | 5.31 |
[P4448]Br | 2.69±0.30 | ND | ND | ND | ND | ND | 639.85 | 665.45 | 685.05 | 364.95 | 6.31 |
[P4448]Cl | 3.11±0.11 | 1.26±0.02 | ND | 1.30±0.01 | 0.04±0.01 | ND | 635.25 | 664.55 | 680.65 | 357.40 | 5.80 |
[P4448]CF3COO | 0.27±0.01 | 0.24±0.00 | ND | 1.07±0.04 | 0.87±0.02 | ND | 480.95 | 472.85/548.55 | 569.85 | 359.71 | 6.17 |
[N4444]BF4 | 0.94±0.06 | ND | ND | ND | ND | ND | 469.75 | 492.25/664.75 | 676.65 | 367.82 | 3.65 |
[N4444]Br | 0.94±0.00 | ND | ND | ND | ND | ND | 473.35 | 492.85/536.15 | 506.35 | 349.57 | 4.14 |
[N4444]Cl | 8.51±0.08 | ND | ND | ND | ND | ND | 464.95 | 485.25 | 497.35 | 361.95 | 4.76 |
[N4444]CF3COO | 0.16±0.03 | ND | ND | ND | ND | ND | 480.25 | 504.25 | 513.75 | 365.62 | 6.35 |
[ChCl][Rib] | 0.06±0.04 | 23.40±0.25 | ND | ND | ND | ND | 520.55 | 545.05 | 557.75 | 342.81 | 18.29 |
[ChCl][Glu] | 0.01±0.00 | 654.05±39.65 | ND | ND | ND | ND | 494.35 | 520.85 | 563.25 | 341.91 | 19.06 |
[ChCl][Fru] | 12.93±0.12 | 54.06±0.48 | ND | ND | ND | ND | 432.75 | 448.85/514.55/564.35 | 563.75 | 347.21 | 16.17 |
[ChCl][Sur] | 7.87±0.08 | >2201.00±83.00 | ND | ND | ND | ND | 509.05 | 543.85 | 559.65 | 338.53 | 20.83 |
Table 1 Properties of ionic liquids and deep eutectic solvents
ILs/DESs | Wc/% | η×10-3/(mPa·s)(298.15 K) | α (298.15 K) | β (298.15 K) | π* (298.15 K) | (298.15 K) | Ti/K | Tpeak/K | Tf/K | Wlost/% | W973.15/% |
---|---|---|---|---|---|---|---|---|---|---|---|
[C4mim]BF4 | 0.52±0.01 | 0.10±0.00 | 0.69±0.02 | 0.32±0.01 | 1.05±0.03 | 0.70±0.02 | 644.45 | 691.05 | 701.75 | 370.71 | 1.12 |
[C4mim]Br | 0.27±0.02 | ND | ND | ND | ND | ND | 556.75 | 587.15 | 595.25 | 362.91 | 3.61 |
[C4mim]Cl | 0.13±0.02 | ND | ND | ND | ND | ND | 538.95 | 560.75 | 569.85 | 360.51 | 4.33 |
[C4mim]CF3COO | 1.49±0.02 | 0.08±0.00 | 0.61±0.03 | 0.71±0.03 | 0.96±0.02 | 0.64±0.01 | 454.05 | 471.45/551.45 | 519.25 | 353.05 | 7.16 |
[P4444]BF4 | 0.29±0.01 | ND | ND | ND | ND | ND | 719.45 | 741.35 | 753.45 | 364.74 | 3.19 |
[P4444]Br | 0.52±0.02 | ND | ND | ND | ND | ND | 645.55 | 675.45 | 691.05 | 369.57 | 1.88 |
[P4444]Cl | 0.02±0.01 | ND | ND | ND | ND | ND | 640.25 | 669.95 | 685.65 | 364.47 | 3.72 |
[P4444]CF3COO | 0.15±0.01 | ND | ND | ND | ND | ND | 462.15 | 476.65/499.15/518.35 | 512.05 | 350.60 | 3.91 |
[P4448]BF4 | 1.25±0.45 | 0.89±0.00 | ND | 0.68±0.01 | 0.87±0.02 | ND | 703.95 | 743.95 | 751.35 | 366.02 | 5.31 |
[P4448]Br | 2.69±0.30 | ND | ND | ND | ND | ND | 639.85 | 665.45 | 685.05 | 364.95 | 6.31 |
[P4448]Cl | 3.11±0.11 | 1.26±0.02 | ND | 1.30±0.01 | 0.04±0.01 | ND | 635.25 | 664.55 | 680.65 | 357.40 | 5.80 |
[P4448]CF3COO | 0.27±0.01 | 0.24±0.00 | ND | 1.07±0.04 | 0.87±0.02 | ND | 480.95 | 472.85/548.55 | 569.85 | 359.71 | 6.17 |
[N4444]BF4 | 0.94±0.06 | ND | ND | ND | ND | ND | 469.75 | 492.25/664.75 | 676.65 | 367.82 | 3.65 |
[N4444]Br | 0.94±0.00 | ND | ND | ND | ND | ND | 473.35 | 492.85/536.15 | 506.35 | 349.57 | 4.14 |
[N4444]Cl | 8.51±0.08 | ND | ND | ND | ND | ND | 464.95 | 485.25 | 497.35 | 361.95 | 4.76 |
[N4444]CF3COO | 0.16±0.03 | ND | ND | ND | ND | ND | 480.25 | 504.25 | 513.75 | 365.62 | 6.35 |
[ChCl][Rib] | 0.06±0.04 | 23.40±0.25 | ND | ND | ND | ND | 520.55 | 545.05 | 557.75 | 342.81 | 18.29 |
[ChCl][Glu] | 0.01±0.00 | 654.05±39.65 | ND | ND | ND | ND | 494.35 | 520.85 | 563.25 | 341.91 | 19.06 |
[ChCl][Fru] | 12.93±0.12 | 54.06±0.48 | ND | ND | ND | ND | 432.75 | 448.85/514.55/564.35 | 563.75 | 347.21 | 16.17 |
[ChCl][Sur] | 7.87±0.08 | >2201.00±83.00 | ND | ND | ND | ND | 509.05 | 543.85 | 559.65 | 338.53 | 20.83 |
ILs | [ChCl][Rib] | [ChCl][Glu] | [ChCl][Fru] | [ChCl][Sur] |
---|---|---|---|---|
[C4mim]BF4 | ? | UCST | UCST | UCST |
[C4mim]Br | ? | ? | ? | ? |
[C4mim]Cl | ? | ? | ? | ? |
[C4mim]CF3COO | ? | ? | ? | ? |
[P4444]BF4 | × | × | × | × |
[P4444]Br | LCST | LCST | LCST | LCST |
[P4444]Cl | LCST | ? | LCST | LCST |
[P4444]CF3COO | ? | ? | ? | ? |
[P4448]BF4 | × | × | × | × |
[P4448]Br | LCST | LCST | LCST | LCST |
[P4448]Cl | LCST | LCST | LCST | LCST |
[P4448]CF3COO | × | × | × | × |
[N4444]BF4 | × | × | × | × |
[N4444]Br | ? | ? | ? | ? |
[N4444]Cl | ? | ? | ? | ? |
[N4444]CF3COO | LCST | LCST | LCST | LCST |
Table 2 Construction of thermo reversible ILs-DESs-H2O system
ILs | [ChCl][Rib] | [ChCl][Glu] | [ChCl][Fru] | [ChCl][Sur] |
---|---|---|---|---|
[C4mim]BF4 | ? | UCST | UCST | UCST |
[C4mim]Br | ? | ? | ? | ? |
[C4mim]Cl | ? | ? | ? | ? |
[C4mim]CF3COO | ? | ? | ? | ? |
[P4444]BF4 | × | × | × | × |
[P4444]Br | LCST | LCST | LCST | LCST |
[P4444]Cl | LCST | ? | LCST | LCST |
[P4444]CF3COO | ? | ? | ? | ? |
[P4448]BF4 | × | × | × | × |
[P4448]Br | LCST | LCST | LCST | LCST |
[P4448]Cl | LCST | LCST | LCST | LCST |
[P4448]CF3COO | × | × | × | × |
[N4444]BF4 | × | × | × | × |
[N4444]Br | ? | ? | ? | ? |
[N4444]Cl | ? | ? | ? | ? |
[N4444]CF3COO | LCST | LCST | LCST | LCST |
ILs | DESs | T/K | A | B | C | R2 |
---|---|---|---|---|---|---|
[C4mim]BF4 | [ChCl][Fru] | 298.15 | 1.00 | -1.02 | 9.75 | 0.9999 |
[ChCl][Glu] | 298.15 | 1.19 | -2.05 | 8.86 | 0.9941 | |
[ChCl][Glu] | 328.15 | 1.23 | -1.67 | 0.31 | 0.9982 | |
[ChCl][Sur] | 308.15 | 1.21 | -1.99 | 1.08 | 0.9929 | |
[P4444]Br | [ChCl][Rib] | 308.15 | 1.48 | -1.70 | 4.17 | 1.0000 |
[ChCl][Glu] | 308.15 | 2.10 | -2.54 | 3.44 | 0.9994 | |
[ChCl][Fru] | 308.15 | 1.58 | -1.81 | 4.30 | 0.9998 | |
[ChCl][Sur] | 308.15 | 1.04 | -0.91 | 11.69 | 0.9983 | |
[P4444]Cl | [ChCl][Fru] | 308.15 | 0.07 | 3.83 | 8.64 | 0.9996 |
[ChCl][Sur] | 308.15 | 0.62×10-17 | 59.49 | 65.87 | 0.9928 | |
[P4448]Br | [ChCl][Fru] | 308.15 | 0.58 | -4.97 | 24.29 | 0.9976 |
[ChCl][Sur] | 308.15 | 0.10 | -2.04 | 133.00 | 0.9912 | |
[P4448]Cl | [ChCl][Fru] | 308.15 | 0.72 | -0.61 | 63.26 | 0.9890 |
[ChCl][Sur] | 308.15 | 1.47 | -2.31 | 51.95 | 0.9971 | |
[N4444]CF3COO | [ChCl][Rib] | 308.15 | 8.05 | -5.90 | 2.34 | 0.9916 |
[ChCl][Glu] | 308.15 | 2.66 | -4.36 | 9.64 | 0.9978 | |
[ChCl][Fru] | 298.15 | 3.65 | -4.23 | 5.02 | 0.9961 | |
[ChCl][Fru] | 308.15 | 28.17 | -8.74 | -3.85 | 0.9976 | |
[ChCl][Fru] | 328.15 | 3.57 | -5.40 | -1.52 | 0.9976 | |
[ChCl][Sur] | 308.15 | 3696.29 | -19.26 | -23.64 | 0.9782 |
Table 3 Phase diagram of ILs-DESs-H2O with the corresponding fitting of the experimental data
ILs | DESs | T/K | A | B | C | R2 |
---|---|---|---|---|---|---|
[C4mim]BF4 | [ChCl][Fru] | 298.15 | 1.00 | -1.02 | 9.75 | 0.9999 |
[ChCl][Glu] | 298.15 | 1.19 | -2.05 | 8.86 | 0.9941 | |
[ChCl][Glu] | 328.15 | 1.23 | -1.67 | 0.31 | 0.9982 | |
[ChCl][Sur] | 308.15 | 1.21 | -1.99 | 1.08 | 0.9929 | |
[P4444]Br | [ChCl][Rib] | 308.15 | 1.48 | -1.70 | 4.17 | 1.0000 |
[ChCl][Glu] | 308.15 | 2.10 | -2.54 | 3.44 | 0.9994 | |
[ChCl][Fru] | 308.15 | 1.58 | -1.81 | 4.30 | 0.9998 | |
[ChCl][Sur] | 308.15 | 1.04 | -0.91 | 11.69 | 0.9983 | |
[P4444]Cl | [ChCl][Fru] | 308.15 | 0.07 | 3.83 | 8.64 | 0.9996 |
[ChCl][Sur] | 308.15 | 0.62×10-17 | 59.49 | 65.87 | 0.9928 | |
[P4448]Br | [ChCl][Fru] | 308.15 | 0.58 | -4.97 | 24.29 | 0.9976 |
[ChCl][Sur] | 308.15 | 0.10 | -2.04 | 133.00 | 0.9912 | |
[P4448]Cl | [ChCl][Fru] | 308.15 | 0.72 | -0.61 | 63.26 | 0.9890 |
[ChCl][Sur] | 308.15 | 1.47 | -2.31 | 51.95 | 0.9971 | |
[N4444]CF3COO | [ChCl][Rib] | 308.15 | 8.05 | -5.90 | 2.34 | 0.9916 |
[ChCl][Glu] | 308.15 | 2.66 | -4.36 | 9.64 | 0.9978 | |
[ChCl][Fru] | 298.15 | 3.65 | -4.23 | 5.02 | 0.9961 | |
[ChCl][Fru] | 308.15 | 28.17 | -8.74 | -3.85 | 0.9976 | |
[ChCl][Fru] | 328.15 | 3.57 | -5.40 | -1.52 | 0.9976 | |
[ChCl][Sur] | 308.15 | 3696.29 | -19.26 | -23.64 | 0.9782 |
System | Ecomplex/(kJ·mol-1) | E[ChCl][Fru]/(kJ·mol-1) | EBSSE/(kJ·mol-1) | ΔG/(kJ·mol-1) | ||
---|---|---|---|---|---|---|
[P4448]+-Cl- | -998.19×103 | -709.25×103 | -288.84×103 | — | 4.79 | -91.01 |
[P4448]Cl-H2O | -1046.19×103 | -998.19×103 | -47.98×103 | — | 1.36 | -16.39 |
[Ch]+-Cl- | -495.19×103 | -206.35×103 | -288.84×103 | — | 4.05 | -110.71 |
[ChCl][Fru] | -926.74×103 | -495.29×103 | -431.41×103 | — | 2.10 | -43.25 |
[ChCl][Fru]-H2O | -974.74×103 | -926.73×103 | -47.98×103 | — | 1.68 | -20.95 |
[P4448]Cl-[ChCl][Fru]-H2O | -1972.96×103 | -926.73×103 | -998.18×103 | -47.98×103 | 3.70 | -60.43 |
Table 4 Interaction energy of ILs-DESs-H2O ternary system
System | Ecomplex/(kJ·mol-1) | E[ChCl][Fru]/(kJ·mol-1) | EBSSE/(kJ·mol-1) | ΔG/(kJ·mol-1) | ||
---|---|---|---|---|---|---|
[P4448]+-Cl- | -998.19×103 | -709.25×103 | -288.84×103 | — | 4.79 | -91.01 |
[P4448]Cl-H2O | -1046.19×103 | -998.19×103 | -47.98×103 | — | 1.36 | -16.39 |
[Ch]+-Cl- | -495.19×103 | -206.35×103 | -288.84×103 | — | 4.05 | -110.71 |
[ChCl][Fru] | -926.74×103 | -495.29×103 | -431.41×103 | — | 2.10 | -43.25 |
[ChCl][Fru]-H2O | -974.74×103 | -926.73×103 | -47.98×103 | — | 1.68 | -20.95 |
[P4448]Cl-[ChCl][Fru]-H2O | -1972.96×103 | -926.73×103 | -998.18×103 | -47.98×103 | 3.70 | -60.43 |
1 | Wang B, Qin L, Mu T, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
2 | Xue Z M, Qin L, Jiang J Y, et al. Thermal, electrochemical and radiolytic stabilities of ionic liquids[J]. Physical Chemistry Chemical Physics, 2018, 20(13): 8382-8402. |
3 | Gutowski K E, Broker G A, Willauer H D, et al. Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations[J]. Journal of the American Chemical Society, 2003, 125(22): 6632-6633. |
4 | Santana-Mayor Á, Socas-Rodríguez B, Rodríguez-Ramos R, et al. A green and simple procedure based on deep eutectic solvents for the extraction of phthalates from beverages[J]. Food Chemistry, 2020, 312: 125798. |
5 | Yu D K, Mou H Y, Fu H, et al. “Inverted” deep eutectic solvents based on host-guest interactions[J]. Chemistry — An Asian Journal, 2019, 14(23): 4183-4188. |
6 | Yu D K, Mu T C. Strategy to form eutectic molecular liquids based on noncovalent interactions[J]. The Journal of Physical Chemistry B, 2019, 123(23): 4958-4966. |
7 | Yu D K, Mou H Y, Zhao X H, et al. Eutectic molecular liquids based on hydrogen bonding and π-π interaction for exfoliating two-dimensional materials and recycling polymers[J]. Chemistry — An Asian Journal, 2019, 14(19): 3350-3356. |
8 | Zeng Q, Wang Y, Huang Y, et al. Deep eutectic solvents as novel extraction media for protein partitioning[J]. The Analyst, 2014, 139(10): 2565-2573. |
9 | Xu K J, Wang Y Z, Huang Y H, et al. A green deep eutectic solvent-based aqueous two-phase system for protein extracting[J]. Analytica Chimica Acta, 2015, 864: 9-20. |
10 | Xu P L, Wang Y Z, Chen J, et al. Development of deep eutectic solvent-based aqueous biphasic system for the extraction of lysozyme[J]. Talanta, 2019, 202: 1-10. |
11 | Zhang H M, Wang Y Z, Zhou Y G, et al. Aqueous biphasic systems containing PEG-based deep eutectic solvents for high-performance partitioning of RNA[J]. Talanta, 2017, 170: 266-274. |
12 | Li N, Wang Y Z, Xu K J, et al. High-performance of deep eutectic solvent based aqueous bi-phasic systems for the extraction of DNA[J]. RSC Advances, 2016, 6(87): 84406-84414. |
13 | Reichardt C. Solvatochromic dyes as solvent polarity indicators[J]. Chemical Reviews, 1994, 94(8): 2319-2358. |
14 | Li Y, Lu X, He W, et al. Influence of the salting-out ability and temperature on the liquid-liquid equilibria of aqueous two-phase systems based on ionic liquid-organic salts-water[J]. Journal of Chemical and Engineering Data, 2016, 61: 475–486. |
15 | Freire M G, Cláudio A F, Araújo J M, et al. Aqueous biphasic systems: a boost brought about by using ionic liquids[J]. Chemical Society Reviews, 2012, 41(14): 4966-4995. |
16 | Dilip M, Bridges N J, Rodríguez H, et al. Effect of temperature on salt-salt aqueous biphasic systems: manifestations of upper critical solution temperature[J]. Journal of Solution Chemistry, 2015, 44(3/4): 454-468. |
17 | Zafarani-Moattar M T, Hamzehzadeh S. Phase diagrams for the aqueous two-phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at T= (278.15, 298.15, and 318.15) K[J]. Journal of Chemical & Engineering Data, 2009, 54(3): 833-841. |
18 | Pang J Y, Han C R, Chao Y H, et al. Partitioning behavior of tetracycline in hydrophilic ionic liquids two-phase systems[J]. Separation Science and Technology, 2015, 50(13): 1993-1998. |
19 | Freire M G, Teles A R R, Canongia Lopes J N, et al. Partition coefficients of alkaloids in biphasic ionic-liquid-aqueous systems and their dependence on the hofmeister series[J]. Separation Science and Technology, 2012, 47(2): 284-291. |
20 | Sadeghi R, Golabiazar R, Shekaari H. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide[J]. The Journal of Chemical Thermodynamics, 2010, 42(4): 441-453. |
21 | Gao J, Chen L, Yan Z C. Extraction of dimethyl sulfoxide using ionic-liquid-based aqueous biphasic systems[J]. Separation and Purification Technology, 2014, 124: 107-116. |
22 | Taha M, Quental M V, Correia I, et al. Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids[J]. Process Biochemistry, 2015, 50(7): 1158-1166. |
23 | Pereira M M, Pedro S N, Quental M V, et al. Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids[J]. Journal of Biotechnology, 2015, 206: 17-25. |
24 | Deive F J, Rodríguez A, Pereiro A B, et al. Ionic liquid-based aqueous biphasic system for lipase extraction[J]. Green Chemistry, 2011, 13(2): 390-396. |
25 | Gao J, Guo J Y, Nie F H, et al. LCST-type phase behavior of aqueous biphasic systems composed of phosphonium-based ionic liquids and potassium phosphate[J]. Journal of Chemical & Engineering Data, 2017, 62(4): 1335-1340. |
26 | Pandey A, Pandey S. Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water[J]. The Journal of Physical Chemistry B, 2014, 118(50): 14652-14661. |
27 | Guan W, Chang N, Yang L L, et al. Determination and prediction for the polarity of ionic liquids[J]. Journal of Chemical & Engineering Data, 2017, 62(9): 2610-2616. |
28 | Gao J, Chen L, Xin Y, et al. Ionic liquid-based aqueous biphasic systems with controlled hydrophobicity: the polar solvent effect[J]. Journal of Chemical & Engineering Data, 2014, 59(7): 2150-2158. |
29 | Sánchez P B, González B, Salgado J, et al. Physical properties of seven deep eutectic solvents based on l-proline or betaine[J]. The Journal of Chemical Thermodynamics, 2019, 131: 517-523. |
30 | Shafie M H, Yusof R, Gan C Y. Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties[J]. Journal of Molecular Liquids, 2019, 288: 111081. |
31 | Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 120(1/2/3): 215-241. |
32 | Stewart J J P. MOPAC: a semiempirical molecular orbital program[J]. Journal of Computer-Aided Molecular Design, 1990, 4(1): 1-103. |
33 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
34 | Rappoport D, Furche F. Property-optimized Gaussian basis sets for molecular response calculations[J]. The Journal of Chemical Physics, 2010, 133(13): 134105. |
35 | Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics, 1970, 19(4): 553-566. |
36 | Simon S, Duran M, Dannenberg J J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?[J]. The Journal of Chemical Physics, 1996, 105(24): 11024-11031. |
37 | Zafarani-Moattar M T, Shekaari H, Ghaffari F. Evaluation of solute-solvent interaction and phase separation for aqueous polymers solutions containing choline chloride/D-sucrose natural deep eutectic solvent through vapor-liquid equilibria, volumetric and acoustic studies[J]. The Journal of Chemical Thermodynamics, 2020, 142: 105963. |
38 | 金文彬, 李雪楠, 张依, 等. 离子液体在结构相似物分离中的进展[J]. 中国科学: 化学, 2016, 46(12): 1251-1263. |
Jin W B, Li X N, Zhang Y, et al. Separation of structurally-related compounds with ionic liquids[J]. Scientia Sinica (Chimica), 2016, 46(12): 1251-1263. | |
39 | 胡丽华, 陈砺, 方泳华, 等. 低共熔溶剂的分子结构及物性估算的研究进展[J]. 化学试剂, 2017, 39(9): 937-941. |
Hu L H, Chen L, Fang Y H, et al. Molecular structure and physical property estimation of deep eutectic solvents(DESs)[J]. Chemical Reagents, 2017, 39(9): 937-941. | |
40 | Passos H, Luís A, Coutinho J A P, et al. Thermoreversible (ionic-liquid-based) aqueous biphasic systems[J]. Scientific Reports, 2016, 6: 20276. |
41 | Silva F A E, Pereira J F B, Kurnia K A, et al. Temperature dependency of aqueous biphasic systems: an alternative approach for exploring the differences between coulombic-dominated salts and ionic liquids[J]. Chemical Communications, 2017, 53(53): 7298-7301. |
42 | Griffin S T, Dilip M, Spear S K, et al. The opposite effect of temperature on polyethylene glycol-based aqueous biphasic systems versus aqueous biphasic extraction chromatographic resins[J]. Journal of Chromatography B, 2006, 844(1): 23-31. |
43 | Schaeffer N, Pérez-Sánchez G, Passos H, et al. Mechanisms of phase separation in temperature-responsive acidic aqueous biphasic systems[J]. Physical Chemistry Chemical Physics, 2019, 21(14): 7462-7473. |
44 | Gao J, Chen L, Yan Z C. Phase behavior of aqueous biphasic systems composed of ionic liquids and organic salts[J]. Journal of Chemical & Engineering Data, 2015, 60(3): 464-470. |
45 | Qin M Y, Zhong F, Sun Y, et al. Experimental and DFT studies on surface properties of sulfonate-based surface active ionic liquids[J]. Journal of Molecular Structure, 2020, 1215: 128258. |
46 | Gao J, Fang C L, Lin Y Z, et al. Enhanced extraction of astaxanthin using aqueous biphasic systems composed of ionic liquids and potassium phosphate[J]. Food Chemistry, 2020, 309: 125672. |
47 | 张莉莉, 高静, 魏媛仪, 等. LCST型离子液体-盐双水相体系提取虾青素[J]. 中国食品学报, 2020, 20(4): 170-178. |
Zhang L L, Gao J, Wei Y Y, et al. Extraction of astaxanthin by LCST-type ionic liquid-salt aqueous biphasic systems[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(4): 170-178. | |
48 | Cai G M, Yang S Q, Wang X X, et al. Densities and viscosities of binary mixtures containing the polyhydric protic ionic liquid(2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate) and water or alcohols[J]. Journal of Solution Chemistry, 2020, 49(4): 423-457. |
49 | Boli E, Katsavrias T, Voutsas E. Viscosities of pure protic ionic liquids and their binary and ternary mixtures with water and ethanol[J]. Fluid Phase Equilibria, 2020, 520: 112663. |
50 | Guo S, Chen F, Liu L, et al. Effects of the water content on the transport properties of ionic liquids[J]. Industrial & Engineering Chemistry Research, 2019, 58(42): 19661-19669. |
51 | Bounsiar R, Gascón I, Amireche F, et al. Volumetric properties of three pyridinium-based ionic liquids with a common cation or anion[J]. Fluid Phase Equilibria, 2020, 521: 112732. |
52 | Sardar S, Wilfred C D, Mumtaz A, et al. Physicochemical properties, Brönsted acidity and ecotoxicity of imidazolium-based organic salts: non-toxic variants of protic ionic liquids[J]. Journal of Molecular Liquids, 2018, 269: 178-186. |
53 | Bessa A M M, Venerando M S C, Feitosa F X, et al. Low viscosity lactam-based ionic liquids with carboxylate anions: synthesis, characterization, thermophysical properties and mutual miscibility of ionic liquid with alcohol, water, and hydrocarbons[J]. Journal of Molecular Liquids, 2020, 313: 113586. |
54 | Xue Z M, Yan C Y, Zhao X H, et al. How Hofmeister ions change the local environment around thermoresponsive polymers in aqueous solutions: an NMR study[J]. Acta Physico-Chimica Sinica, 2019, 35(1): 49-57. |
55 | Yan C, Xue Z M, Zhao W C, et al. Surprising Hofmeister effects on the bending vibration of water[J]. ChemPhysChem, 2016, 17(20): 3309-3314. |
56 | 郭晶涛. 离子液体结构性质与相互作用的计算[D]. 兰州: 西北师范大学, 2009. |
Guo J T. The calculations of structural properties and the interaction between the anions and cations in ionic liquids[D]. Lanzhou: Northwest Normal University, 2009. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[8] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[9] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[10] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[11] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[12] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[13] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[14] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[15] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||