CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 1906-1919.DOI: 10.11949/0438-1157.20201463
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
WANG Yan1(),XU Jinliang1,2(
),LI Wen1
Received:
2020-10-21
Revised:
2020-12-14
Online:
2021-04-05
Published:
2021-04-05
Contact:
XU Jinliang
通讯作者:
徐进良
作者简介:
王艳(1989—),女,博士研究生,基金资助:
CLC Number:
WANG Yan, XU Jinliang, LI Wen. Heterogeneous structure and phase change analysis of different kinds of supercritical fluids[J]. CIESC Journal, 2021, 72(4): 1906-1919.
王艳, 徐进良, 李文. 不同种类超临界流体异质结构及相变分析[J]. 化工学报, 2021, 72(4): 1906-1919.
Fig.1 Physical model of simulation system (a); Simulation point on Pr-Tr phase diagram (b); FCC structure for SCAr and SPC/E structure for SCW(c); Variation of system temperature, potential energy, and pressure during relaxation and equilibrium stage (d)
Fig.4 The number of SCAr physical clusters varies with temperature (a); Proportion of SCAr atoms in physical cluster of the largest size under different temperature (b); The number of SCW physical clusters varies with temperature (c); Proportion of SCW molecules in physical cluster of the largest size under different temperature (d)
Fig.6 System density proportion of high density region (), average density region () and low density region (?) varies with temperature at Pr=1.5,2.5 and 3.5
Fig.8 The start (Ts) and end temperature (Te) of two-phase region are determined by theoretical method (Pr=1.5, SCAr) (a); Variation of enthalpy with various temperature and the determination of phase change enthalpy under different pressures for SCAr and SCW[(b),(c)]; The change of phase change enthalpy of different pressure for SCAr and SCW(d)
1 | 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290. |
Zhu B G, Wu X M, Zhang L, et al. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290. | |
2 | Knez Ž, Markočič E, Leitgeb M, et al. Industrial applications of supercritical fluids: a review[J]. Energy, 2014, 77: 235-243. |
3 | Brunner G. Applications of supercritical fluids[J]. Annu. Rev. Chem. Biomol. Eng., 2010, 1(1): 321-342. |
4 | Harvey A H, Friend D G. Physical properties of water[M]//Aqueous Systems at Elevated Temperatures and Pressures. Amsterdam: Elsevier, 2004: 1-27. |
5 | Arai A A, Morita T, Nishikawa K. Investigation on structural fluctuation of supercritical cyclohexane by small-angle X-ray scattering[J]. Fluid Phase Equilibr., 2007, 252(1/2): 114-118. |
6 | Cabaço M I, Besnard M, Tassaing T, et al. Local density inhomogeneities detected by Raman scattering in supercritical hexafluorobenzene[J]. Pure Appl. Chem., 2004, 76(1): 141-146. |
7 | Yoshii N, Okazaki S. Molecular dynamics study of structure of clusters in supercritical Lennard-Jones fluid[J]. Fluid Phase Equilibr., 1998, 144(1/2): 225-232. |
8 | Metatla N, Lafond F, Jay-Gerin J P, et al. Heterogeneous character of supercritical water at 400℃ and different densities unveiled by simulation[J]. RSC Adv., 2016, 6(36): 30484-30487. |
9 | Skarmoutsos I, Samios J. Local density inhomogeneities and dynamics in supercritical water: a molecular dynamics simulation approach[J]. J. Phys. Chem. B, 2006, 110(43): 21931-21937. |
10 | Skarmoutsos I, Guardia E, Samios J. Local structural fluctuations, hydrogen bonding and structural transitions in supercritical water[J]. J. Supercrit. Fluid., 2017, 130: 156-164. |
11 | Bernal J D. The Bakerian lecture, 1962. The structure of liquids[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1964, 280(1382): 299-322. |
12 | Gallo P, Corradini D, Rovere M. Widom line and dynamical crossovers as routes to understand supercritical water[J]. Nat. Commun., 2014, 5: 5806. |
13 | Raman A S, Li H Y, Chiew Y C. Widom line, dynamical crossover, and percolation transition of supercritical oxygen via molecular dynamics simulations[J]. J. Chem. Phys., 2018, 148(1): 014502. |
14 | Simeoni G G, Bryk T, Gorelli F A, et al. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids[J]. Nat. Phys., 2010, 6(7): 503-507. |
15 | Banuti D T. Crossing the Widom-line - supercritical pseudo-boiling[J]. J. Supercrit. Fluid., 2015, 98: 12-16. |
16 | Banuti D T, Raju M, Ihme D M. Between supercritical liquids and gases -reconciling dynamic and thermodynamic state transitions[J]. J. Supercrit. Fluid., 2020, 165:104895. |
17 | McMillan P F, Stanley H E. Fluid phases: going supercritical[J]. Nat. Phys., 2010, 6(7): 479-480. |
18 | Nichele J, de Oliveira A B, Alves L S D B, et al. Accurate calculation of near-critical heat capacities CP and CV of argon using molecular dynamics[J]. J. Mol. Liq., 2017, 237: 65-70. |
19 | Nichele J, Borges I, Oliveira A B, et al. Molecular dynamics simulations of momentum and thermal diffusion properties of near-critical argon along isobars[J]. J. Supercrit. Fluid., 2016, 114: 46-54. |
20 | Lautenschlaeger M P, Hasse H. Transport properties of the Lennard-Jones truncated and shifted fluid from non-equilibrium molecular dynamics simulations[J]. Fluid Phase Equilibr., 2019, 482: 38-47. |
21 | Losey J, Sadus R J. The Widom line and the Lennard-Jones potential[J]. J. Phys. Chem. B, 2019, 123(39): 8268-8273. |
22 | Ghosh K, Krishnamurthy C V. Structural behavior of supercritical fluids under confinement[J]. Phys. Rev. E, 2018, 97(1): 012131. |
23 | Guàrdia E, Martí J. Density and temperature effects on the orientational and dielectric properties of supercritical water[J]. Phys. Rev. E, 2004, 69: 011502. |
24 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1): 1-19. |
25 | Maddox M W, Goodyear G, Tucker S C. Origins of atom-centered local density enhancements in compressible supercritical fluids[J]. J. Phys. Chem. B, 2000, 104(26): 6248-6257. |
26 | Maddox M W, Goodyear G, Tucker S C. Effect of critical slowing down on local-density dynamics[J]. J. Phys. Chem. B, 2000, 104(26): 6266-6270. |
27 | 王艳, 徐进良, 李文, 等. 超临界流体密度波动机理的分子动力学模拟[J]. 科学通报, 2020, 65(17): 1694-1705. |
Wang Y, Xu J L, Li W, et al. Molecular dynamics study of mechanism of density fluctuation in supercritical fluid[J]. Chinese Science Bulletin, 2020, 65(17): 1694-1705. | |
28 | 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007: 110-112. |
Chen Z L, Xu W R, Tang L D. Theory and Practice of Molecular Simulation [M]. Beijing: Chemical Industry Press, 2007: 110-112. | |
29 | Barrat J L, Hansen J P. Basic Concepts for Simple and Complex Liquids[M]. Cambridge: Cambridge University Press, 2003. |
30 | Bolmatov D, Brazhkin V V, Fomin Y D, et al. Evidence for structural crossover in the supercritical state[J]. J. Chem. Phys., 2013, 139(23): 234501. |
31 | Sedunov B I. Structural transition in supercritical fluids[J]. Journal of Thermodynamics, 2011, 2011: 1-5. |
32 | Martinez H L, Ravi R, Tucker S C. Characterization of solvent clusters in a supercritical Lennard-Jones fluid[J]. J. Chem. Phys., 1996, 104(3): 1067-1080. |
33 | Zhao Z X, Sun C Z, Zhou R F. Thermal conductivity of confined-water in graphene nanochannels[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119502. |
34 | Cengel Y A, Boles M A. Thermodynamics:An Engineering Approach[M]. 5th ed. New York: McGraw-Hill, 1991: 346-350. |
35 | 姜中宏, 胡新元, 赵祥书. 试论玻璃结构: 用熵的观点讨论结构状态[J]. 硅酸盐学报, 1982, 10(4): 491-499. |
Jiang Z H, Hu X Y, Zhao X S. Some aspects of glass structure—discussion of the structural state in light of entropy[J]. Journal of the Chinese Ceramic Society, 1982, 10(4): 491-499. | |
36 | Fehder P L. “Anomalies” in the radial distribution functions for simple liquids[J]. J. Chem. Phys., 1970, 52(2): 791-796. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[6] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[9] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[10] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[13] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[14] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[15] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||